Элементарные частицы и их свойства как физика микромира. Физика микромира и мегамира. Атомная физика Законы классической физики описывают микромир

Физика микромира

Структурные уровни материи в физике

(вставить картинку)

Структурные уровни веществ в микромире

    Молекулярный уровень - уровень молекулярного строения веществ. Молекула – единая квантово – механическая система объединяющая атомы

    Атомный уровень - уровень атомного строения веществ.

Атом – структурный элемент микромира, состоящий из ядра и электронной оболочки.

    Нуклонный уровень - уровень ядра и частиц его составляющих.

Нуклон – общее название протона и нейтрона, являющихся сотавными частыми атомных ядер.

    Кварковый уровень - уровень элементарных частиц – кварков и лептонов

Структура атома

Размеры атомов порядка 10 -10 м.

Размеры ядер атомов всех элементов порядка 10 -15 м, что в десятки тысяч раз меньше размеров атомов

Ядро атома положительно, а вращающиеся вокруг ядра электроны несут с собой отрицательный электрический заряд. Положительный заряд ядра равен сумме отрицательных зарядов электронов. Атом электрически нейтрален.

Планетарная модель атома Резерфорда. (вставить рисунок)

Показаны круговые орбиты четырёх электронов

Электроны на орбитах удерживаются силами электрического притяжения между ними и ядром атома

Электрон не может пребывать в одном и том же энергетическом состоянии. В электронной оболочке электроны располагаются слоями. Каждая оболочка содержит определённое количество: в первом ближайшем от ядра слое – 2, во втором – 8, в третьем – 18, в четвертом – 32 и т. д. После второго слоя электронные орбиты расчисляются на подслои.

Энергетические уровни атома и условное изображение процессов поглощения и испускания фотонов (посмотреть рисунок)

При переходе с низкого энергетического уровня на более высокий энергетический уровень атом поглощает энергию (квант энергии) равный разности энергии между перехода. Атом испускает квант энергии если электрон в атоме переход с более высокого энергетического уровня на более низкий (переходит скачком).

Общая классификация элементарных частиц

Элементарные частицы - это неразложимые частицы, внутренняя структура которых не являются объединением других свободных частиц, они не являются атомам или атомными ядрами, за исключением протона

Классификация

    Фотоны

    Электроны

  • Барионы

Нейтрон

Основные характеристики элементарных частиц

Масса

    Лептоны (легкие)

    Мезоны (средние)

    Барионы (тяжелые)

Время жизни

    стабильные

    Квазистабильные (распадающиеся при слабом и электромагнитном взаимодействии)

    Резонансы (неустойчивые короткоживущие частицы, распадающиеся за счет сильного взаимодействия)

Взаимодействия в микромире

    Сильное взаимодействие обеспечивает сильную связь и нейтронов в ядрах атомов, кварков в нуклонах

    Электромагнитное взаимодействие обеспечивает связь электронов с ядрами, атомов в молекулах

    Слабое взаимодействие обеспечивает переход между разными типами кварков, в частности, определяет распад нейтронов, вызывает взаимные переходы между различными типами лептонов

    Гравитационное взаимодействие в микромире при расстоянии 10 -13 см не может не учитываться, однако при расстояниях порядка 10 -33 см начинают проявляться особые свойства физического вакуума – виртуальные сверхтяжелые частицы окружают себя гравитационными полем, искажающим геометрию пространства

Характеристика взаимодействия элементарных частиц

Тип взаимодействия

Относительная интенсивность

Радиус действия см

Частицы между которыми происходит взаимодействие

Частицы – переносчики взаимодействия

название

Масса ГэВ

Сильное

Адроны (нейтроны, протоны, мезоны)

Глюоны

Электромагнитное

Все электрически заряженные тела и частицы

Фотон

Слабое

Все элементарные частицы, кроме фотонов

Векторные обозоны W + , W - , Z 0

Гравитационное

Все частицы

Гравитоны (гипотетически частица)

Структурны уровни организации материи (поле)

Поле

    Гравитационное (кванты – гравитоны)

    Электромагнитное (кванты – фотоны)

    Ядерное (кванты – мезоны)

    Электронно – позитивное (квант – электроны, позитроны)

Структурные уровни организации материи (вещество и поле)

Вещество и поле различаются

    По массе покоя

    По закономерностям движения

    По степеням проницаемости

    По степени концентрации массы и энергии

    Как корпускулярная и волновая сущности

Общий вывод : различие веществ и поля верно характеризует реальный мир в макроскопическом приближении. Это различие не является абсолютным, и при переходе к микрообъектам ярко обнаруживается его относительность. В микромире понятие «частицы» (вещество) и «волны» (поля) выступают как дополнительные характеристики, выражающие внутренние противоречивость сущность микрообъектов.

Кварки – составные элементарных частиц

У всех кварков дробный электрический заряд. Кварки характеризуются странностью, очарованием и красотой.

Барионный заряд у всех кварков равен 1/3, у соответствующих им антикварков -1/3. У каждого кварка три состояния, эти состояния называются цветовыми: R – красный, G – зеленый и B – голубой

Введение

В XX в. естествознание развивалось невероятно быстрыми темпами, что обусловливалось потребностями практики. Промышленность требовала новых технологий, в основе которых лежало естественнонаучное знание.

Естествознание - наука о явлениях и законах природы. Современное естествознание включает множество естественнонаучных отраслей: физику, химию, биологию, физическую химию, биофизику, биохимию, геохимию и др. Оно охватывает широкий спектр вопросов о разнообразных свойствах объектов природы, которую можно рассматривать как единое целое.

Огромное ветвистое древо естествознания медленно произрастало из натурфилософии - философии природы, представляющей собой умозрительное истолкование природных явлений и процессов. Поступательное развитие экспериментального естествознания привело к постепенному перерастанию натурфилософии в естественнонаучные знания, и как результат -- феноменальные достижения во всех областях науки и, прежде всего, в естествознании, которыми так богато ушедшее XX столетие.

Физика - микромир, макромир, мегамир

В недрах натурфилософии зарождалась физика - наука о природе, изучающая простейшие и вместе с тем наиболее общие свойства материального мира.

Физика - основа естествознания. В соответствии с многообразием исследуемых форм материи, и ее движения она подразделяется на физику элементарных частиц, ядерную физику, физику плазмы и т. д. Она знакомит нас с наиболее общими законами природы, управляющими течением процессов в окружающем нас мире и во Вселенной в целом.

Цель физики заключается в отыскании общих законов природы и в объяснении конкретных процессов на их основе. По мере продвижения к этой цели перед учеными постепенно вырисовывалась величественная и сложная картина единства природы.

Мир представляет собой не совокупность разрозненных, независимых друг от друга событий, а разнообразные и многочисленные проявления одного целого.

Микромир . В 1900г. немецкий физик Макс Планк предложил совершенно новый подход - квантовый, основанный на дискретной концепции. Он впервые ввел Квантовую гипотезу и вошел в историю развития физики как один из основоположников квантовой теории . С введением квантовой концепции начинается - этап современной физики, включающий не только квантовые, но и классические представления.

На основании квантовой механики объясняются многие микропроцессы, происходящие в пределах атома, ядра и элементарных частиц - появились новые отрасли современной физики: квантовая электродинамика, квантовая теория твердого тела, квантовая оптика и многие другие.

В первые десятилетия XX в. исследовалась радиоактивность, и выдвигались идеи о строении атомного ядра.

В 1938г. сделано важное открытие: немецкие радиохимики О. Ган и Ф. Штрассман обнаружили деление ядер урана при облучении их нейтронами. Это открытие способствовало бурному развитию ядерной физики, созданию ядерного оружия и рождению атомной энергетики.

Одно из крупнейших достижений физики XX в. - это, безусловно, создание в 1947г. транзистора выдающимися американскими физиками Д. Бардиным, У. Браттейном и У. Шокли.

С развитием физики полупроводников и созданием транзистора зарождалась новая технология - полупроводниковая, а вместе с ней и перспективная, бурно развивающаяся отрасль естествознания - микроэлектроника.

Представления об атомах и их строении за последние сто лет изменились радикально. В конце XIX -- начале XX вв. в физике были сделаны выдающиеся открытия, разрушившие прежние представления о строении материи.

Открытие электрона (1897г.), затем протона, фотона и нейтрона показали, что атом имеет сложную структуру. Исследование строения атома становится важнейшей задачей физики XX века. После открытия электрона, протона, фотона и, наконец, в 1932 году нейтрона было установлено существование большого числа новых элементарных частиц.

В том числе: позитрон, (античастица электрона); мезоны -- нестабильные микрочастицы; различного рода гипероны -- нестабильные микрочастицы с массами больше массы нейтрона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10 -22 -10 -24 с); нейтрино -- стабильная, не имеющая электрического заряда частица, обладающая почти невероятной проницаемостью; антинейтрино -- античастица нейтрино, отличающаяся от нейтрино знаком лептонного заряда, и др.

Элементарные частицы в настоящее время обычно разделяют на следующие классы:

  • 1. Фотоны -- кванты электромагнитного поля, частицы с нулевой массой покоя, не имеют сильного и слабого взаимодействия, но участвуют в электромагнитном.
  • 2. Лептоны (от греч. leptos -- легкий), к числу которых относятся электроны, нейтрино; все они не обладают сильным взаимодействием, но участвуют в слабом взаимодействии, а имеющие электрический заряд -- также и в электромагнитном взаимодействии.
  • 3. Мезоны -- сильно взаимодействующие нестабильные частицы.
  • 4. Барионы (от греч. barys -- тяжелый), в состав которых входят нуклоны (нестабильные частицы с массами, большими массы нейтрона), гипероны, многие из резонансов.
  • 5. Приблизительно в 1963-1964 годах появилась гипотеза о существовании кварков -- частиц, из которых состоят барионы и мезоны, являющиеся сильно взаимодействующими и по этому свойству объединенными общим названием адронов.
  • 6. Кварки имеют весьма необычные свойства: обладают дробными электрическими зарядами, что не характерно для других микрочастиц, и, по-видимому, не могут существовать в свободном, не связанном виде. Число различных кварков, отличающихся друг от друга величиной и знаком электрического заряда и некоторыми другими признаками, достигает уже нескольких десятков.

Мегамир. Теория Большого Взрыва. В 1946-1948 гг. Г. Гамов разработал теорию горячей Вселенной (модель Большого Взрыва). Согласно этой модели вся Вселенная 15 млрд. лет назад (по другим оценкам 18 млрд. лет) была сжата в точку с бесконечно большой плотностью (не меньше чем 10 93 г/см 3). Такое состояние называется сингулярностью , законы физики к нему не применимы .

Причины возникновения такого состояния и характер пребывания материи в этом состоянии остаются неясными. Это состояние оказалось неустойчивым, в результате произошел взрыв и скачкообразный переход к расширяющейся Вселенной.

В момент Большого Взрыва Вселенная мгновенно нагрелась до очень высокой температуры более 10 28 К. Уже через 10 -4 с после Большого Взрыва плотность во Вселенной падает до 10 14 г/см 3 . При такой высокой температуре (выше температуры центра самой горячей звезды) молекулы, атомы и даже ядра атомов существовать не могут .

Вещество Вселенной пребывало в виде элементарных частиц, среди которых преобладали электроны, позитроны, нейтрино, фотоны, а также в относительно малом количестве протоны и нейтроны. Плотность вещества Вселенной спустя 0,01 секунды после взрыва, несмотря на очень высокую температуру, была огромной: в 4000 миллионов раз больше, чем у воды.

В конце первых трех минут после взрыва температура вещества Вселенной, непрерывно снижаясь, достигла 1 млрд. градусов (10 9 К). Плотность вещества также снизилась, но еще была близкой к плотности воды. При этой, хотя и очень высокой, температуре начали образовываться ядра атомов, в частности, ядра тяжелого водорода (дейтерия) и ядра гелия.

Однако вещество Вселенной в конце первых трех минут состояло в основном из фотонов, нейтрино и антинейтрино. Только по истечении нескольких сотен тысяч лет начали образовываться атомы, главным образом водорода и гелия.

Силы гравитации превращали газ в сгустки, ставшие материалом для возникновения галактик и звезд.

Таким образом, физика XX века давала все более глубокое обоснование идеи развития.

Макромир. В макрофизике можно выделить достижения в трех направлениях: в области электроники (микросхемы), в области создания лазеров и их применения, области высокотемпературной сверхпроводимости.

Слово “лазер” представляет собой аббревиатуру английской фразы “Light Amplification by Stimulated Emission of Radiation”, переводимой как усиление света в результате вынужденного (индуцированного) излучения . Гипотеза о существовании индуцированного излучения была высказана в 1917 г. А Эйнштейном.

Советские ученые Н.Г. Басов и А.М. Прохоров и независимо от них американский физик Ч. Таунс использовали явление индуцированного излучения для создания микроволнового генератора радиоволн с длинной волны =1,27 см.

Первым квантовым генератором был рубиновый твердотельный лазер. Также были созданы: газовые, полупроводниковые, жидкостные, газодинамические, кольцевые (бегущей волны).

Лазеры нашли широкое применение в науке - основной инструмент в нелинейной оптике , когда вещества прозрачные или нет для потока обычного света меняют свои свойства на противоположные.

Лазеры позволили осуществить новый метод получения объемных и цветных изображений, названный голографией, широко применяются в медицине, особенно в офтальмологии, хирургии и онкологии, способные создать малое пятно, благодаря высокой монохроматичности и направленности.

Лазерная обработка металлов . Возможность получать с помощью лазеров световые пучки высокой мощности до 10 12 -10 16 вт/см 2 при фокусировки излучения в пятно диаметром до 10-100 мкм делает лазер мощным средством обработки оптически непрозрачных материалов, недоступных для обработки обычными методами (газовая и дуговая сварка).

Это позволяет осуществлять новые технологические операции, например, просверливание очень узких каналов в тугоплавких материалах, различные операции при изготовлении пленочных микросхем, а также увеличения скорости обработки деталей.

При пробивании отверстий в алмазных кругах сокращает время обработки одного круга с 2-3 дней до 2 мин.

Наиболее широко применяется лазер в микроэлектронике, где предпочтительна сварка соединений, а не пайка.

· Путь микроскопии 3

· Предел микроскопии 5

· Невидимые излучения 7

· Электроны и электронная оптика 9

· Электроны - волны!? 12

· Устройство электронного микроскопа 13

· Объекты электронной микроскопии 15

· Виды электронных микроскопов 17

· Особенности работы с электронным микроскопом 21

· Пути преодоления дифракционного предела электронной микроскопии 23

· Список литературы 27

· Рисунки 28


Примечания:

1. Символ ­ означает возведение в степень. Например, 2 ­3 означает «2 в степени 3».

2. Символ e означает запись числа в показательной форме. Например, 2 e3 означает «2, умноженное на 10 в 3 степени».

3. Все рисунки находятся на последней странице.

4. Вследствие использования не совсем «свежей» литературы данные в этом реферате не отличаются особой «свежестью».

Глаз не видел бы Солнца,

если бы он не был подобен

Солнцу.

Гёте.

Путь микроскопии.

Когда на пороге XVII столетия был создан первый микроскоп, вряд ли кто-либо (и даже его изобретатель) мог представить будущие успехи и многочисленные области применения микроскопии. Оглядыва­ясь назад, мы убеждаемся, что это изобретение знаменовало собой нечто большее, чем создание нового устройства: впервые человек по­лучил возможность увидеть ранее невидимое.

Примерно к этому же времени относится еще одно событие ¾ изобретение телескопа, позволившее увидеть невидимое в мире пла­нет и звезд. Изобретение микроскопа и телескопа представляло собой революцию не только в способах изучения природы, но и в самом ме­тоде исследования.

Действительно, натурфилософы древности наблюдали природу, узнавая о ней только то, что видел глаз, чувствовала кожа, слышало ухо. Можно лишь удивляться тому, как много правильных сведений об окружающем мире получили они, пользуясь «невооруженными» орга­нами чувств и не ставя специальных экспериментов, как это делают сейчас. Вместе с тем наряду с точными фактами и гениальными до­гадками как много ложных «наблюдений», утверждений и выводов ос­тавили нам ученые древности и средних веков!

Лишь значительно позднее был найден метод изучения при­роды, заключающийся в постановке сознательно планируемых экспе­риментов, целью которых является проверка предположений и четко сформулированных гипотез. Особенности этого метода исследования Фрэнсис Бэкон - один из его создателей - выразил в следующих, став­ших знаменитыми, словах: «Ставить эксперимент - это учинять допрос природе».Самые первые шаги экспериментального метода по совре­менным представлениям были скромны, и в большинстве случаев экс­периментаторы того времени обходились без каких-либо устройств, «усиливающих» органы чувств. Изобретение микроскопа и телескопа представляло собой колоссальное расширение возможностей наблю­дения и эксперимента.

Уже первые наблюдения, проведённые с помощью самой простой и несовершенной по современным представлениям техники, открыли «целый мир в капле воды». Оказалось, что знакомые предметы выгля­дят совсем по-иному, если их рассматривать в микроскоп: гладкие на взгляд и ощупь поверхности оказываются в действительности шерохо­ватыми, в «чистой» воде движутся мириады мельчайших организмов. Точно так же первые астрономические наблюдения с помощью теле­скопов дали возможность человеку по-новому увидеть привычный мир планет и звёзд: например, поверхность Луны, воспетой поэтами всех поколений, оказалась гористой и испещрённой многочисленными кра­терами, а у Венеры была обнаружена смена фаз, как и у Луны.

В дальнейшем эти простейшие наблюдения дадут жизнь само­стоятельным областям науки ¾ микроскопии и наблюдательной ас­трономии. Пройдут годы, и каждая из этих областей разовьется в мно­гочисленные разветвления, выражающиеся в целом ряде самых раз­личных применений в биологии, медицине, технике, химии, физике, на­вигации.

Современные микроскопы, которые в отличие от электронных мы будем называть оптическими, представляют собой совершенные при­боры, позволяющие получать большие увеличения с высокой разре­шающей способностью. Разрешающая способность определяется рас­стоянием, на котором два соседних элемента структуры могут быть ещё видимы раздельно. Однако, как показали исследования, оптиче­ская микроскопия практически достигла принципиального предела своих возможностей из-за дифракции и интерференции ¾ явлений, обусловленных волновой природой света.

Степень монохроматичности и когерентности является важной характеристикой волн любой природы (электромагнитных, звуковых и др.). Монохроматические колебания ¾ это колебания, состоящие из синусоидальных волн одной определённой частоты. Когда мы пред­ставляем колебания в виде простой синусоиды соответственно с по­стоянными амплитудой, частотой и фазой, то это является опреде­лённой идеализацией, так как, строго говоря, в природе не существует колебаний и волн, абсолютно точно описываемых синусоидой. Однако, как показали исследования, реальные колебания и волны могут с большей или меньшей степенью точности приближаться к идеальной синусоиде (обладать большей или меньшей степенью монохроматич­ности). Колебания и волны сложной формы можно представить в виде набора синусоидальных колебаний и волн. По сути дела, эту математи­ческую операцию осуществляет призма, разлагающая в цветной спектр солнечный свет.

Монохроматические волны, в том числе и световые, одной и той же частоты (при определённых условиях!) могут взаимодействовать между собой таким образом, что в результате «свет превратится в темноту» или, как говорят, волны могут интерферировать. При интер­ференции происходят местные «усиления и подавления» волн друг другом. Для того чтобы картина интерференции волн оставалась не­изменной с течением времени (например, при рассматривании её гла­зом или фотографировании), необходимо, чтобы волны были между собой когерентны (две волны когерентны между собой, если они дают устойчивую картину интерференции, чему соответствуют равенства их частот и неизменный сдвиг фаз).

Если на пути распространения волн поместить препятствия, то они будут существенно влиять на направление распространения этих волн. Такими препятствиями могут быть края отверстий в экранах, не­прозрачные предметы, а также любые другие виды неоднородностей на пути распространения волн. В частности, неоднородностями могут быть также и прозрачные (для данного излучения) предметы, но отли­чающиеся по коэффициенту преломления, а значит, и по скорости про­хождения волн внутри них. Явление изменения направления распро­странения волн при прохождении их вблизи препятствий называют дифракцией. Обычно дифракция сопровождается интерференцион­ными явлениями.

Предел микроскопии.

Изображение, получаемое при помощи любой оптической сис­темы, есть результат интерференции различных частей световой волны, прошедшей через эту систему. В частности, известно, что огра­ничение световой волны входным зрачком системы (краями линз, зер­кал и диафрагм, составляющих оптическую систему) и связанное с ним явление дифракции приводит к тому, что светящаяся точка будет изо­бражена в виде дифракционного кружка. Это обстоятельство ограни­чивает возможность различать мелкие детали изображения, форми­руемого оптической системой. Изображение, например, бесконечно удалённого источника света (звезды) в результате дифракции на круг­лом зрачке (оправе зрительной трубы), представляет собой довольно сложную картину (см. рис. 1). На этой картине можно увидеть набор концентрических светлых и тёмных колец. Распределение освещённо­стей, которое можно зафиксировать, если двигаться от центра кар­тины к её краям, описывается довольно сложными формулами, кото­рые приводятся в курсах оптики. Однако закономерности, свойствен­ные положению первого (от центра картины) тёмного кольца, выглядят просто. Обозначим через D диаметр входного зрачка оптической сис­темы и через l длину волны света, посылаемого бесконечно удалён­ным источником.

Рис. 1. Дифракционное изображение светящейся точки (так называемый диск Эйри).

Если обозначить через j угол, под которым виден радиус первого тёмного кольца, то как доказывается в оптике

sin j » 1,22 * ( l /D) .

Таким образом, в результате ограничения волнового фронта краями оптической системы (входным зрачком) вместо изображения светящейся точки, соответствующей бесконечно удаленному объекту, мы получаем набор дифракционных колец. Естественно, что это явле­ние ограничивает возможность различения двух близко расположенных точечных источников света. Действительно, в случае двух удаленных источников, например двух звезд, расположенных очень близко друг к другу на небесном своде, в плоскости наблюдения образуются две сис­темы концентрических колец. При определенных условиях они могут перекрываться, и различение источников становится невозможным. Не случайно поэтому в соответствии с «рекомендацией» формулы, приве­денной выше, стремятся строить астрономические телескопы с боль­шими размерами входного зрачка. Предел разрешения, при котором могут наблюдаться два близко расположенных источника света, опре­деляют следующим образом: для определенности в качестве предела разрешения принимают такое положение дифракционных изображений двух точечных источников света, при котором первое тёмное кольцо, создаваемое одним из источников, совпадает с центром светлого пятна, создаваемого другим источником.

Представления об атомах и их строении за последние сто лет изменились радикально. В конце XIX века ученые считали, что:

1) химические атомы каждого элемента неизменны, и су­
ществуют столько сортов атомов, сколько известно хи­
мических элементов (в то время - примерно 70);

2) атомы данного элемента одинаковы;

3) атомы имеют вес, причем различие атомов основано на
различии их веса;

4) взаимный переход атомов данного элемента в атомы
другого элемента невозможен.

В конце XIX - начале XX вв. в физике были сделаны выдающиеся открытия, разрушившие прежние представле­ния о строении материи. Открытие электрона (1897г.), за­тем протона, фотона и нейтрона показали, что атом име­ет сложную структуру. Исследование строения атома ста­новится важнейшей задачей физики XX века.

После открытия электрона, протона, фотона и, наконец, в 1932 году нейтрона было установлено существование большого числа новых элементарных частиц. В том чис­ле: позитрон, (античастица электрона); мезоны - неста­бильные микрочастицы; различного рода гипероны - не­стабильные микрочастицы с массами больше массы нейт­рона; частицы резонансы, имеющие крайне короткое время жизни (порядка 10 -22 -10 -24 с); нейтрино - стабильная, не имеющая электрического заряда частица, обладающая поч­ти невероятной проницаемостью; антинейтрино - антича­стица нейтрино, отличающаяся от нейтрино знаком леп-тонного заряда, и др.

В характеристике элементарных частиц существует еще одно важное представление - взаимодействие.

Различают четыре вида взаимодействия.

Сильное взаимодействие (короткодействующее, радиус действия около 10 -13 см) связывает между собой нуклоны (протоны и нейтроны) в ядре; именно по этой причине ядра атомов являются весьма устойчивыми, их трудно разру­шить.

Электромагнитное взаимодействие (дальнодействующее, радиус действия не ограничен) определяет взаимодействие между электронами и ядрами атомов или молекул; взаи-


модействующие частицы имеют электрические заряды; проявляется в химических связях, силах упругости, трения.

Слабое взаимодействие (короткодействующее, радиус действия меньше 10 - 15 см), в котором участвуют все эле­ментарные частицы, обусловливает взаимодействие нейтри­но с веществом.

Гравитационное взаимодействие - самое слабое, не учитывается в теории элементарных частиц; распространя­ется на все виды материи; имеет решающее значение, когда речь идет об очень больших массах.

Элементарные частицы в настоящее время обычно раз­деляют на следующие классы:

1. Фотоны - кванты электромагнитного поля, части­
цы с нулевой массой покоя, не имеют сильного и слабого
взаимодействия, но участвуют в электромагнитном.



2. Лептоны (от греч. leptos - легкий), к числу которых
относятся электроны, нейтрино; все они не обладают силь­
ным взаимодействием, но участвуют в слабом взаимодей­
ствии, а имеющие электрический заряд - также и в элект­
ромагнитном взаимодействии.

3. Мезоны - сильно взаимодействующие нестабильные
частицы.

4. Барионы (от греч. barys - тяжелый), в состав кото­
рых входят нуклоны (нестабильные частицы с массами,
большими массы нейтрона), гипероны, многие из резонансов.

Сначала, особенно когда число известных элементар­ных частиц ограничивалось электроном, нейтроном и про­тоном, господствовала точка зрения, что атом состоит из этих элементарных «кирпичиков». А дальнейшая задача в исследовании структуры вещества заключается в том, чтобы разыскивать новые, еще не известные «кирпичики», из которых состоит атом, и в определении того, не явля­ются ли эти «кирпичики» (или некоторые из них) сами сложными частицами, построенными из еще более тонких «кирпичиков».

Однако действительная картина строения вещества оказалась еще более сложной, чем можно было предпола­гать. Оказалось, что элементарные частицы могут претер­певать взаимные превращения, в результате которых неко­торые из них исчезают, а некоторые появляются. Неста­бильные микрочастицы распадаются на другие, более ста­бильные, но это вовсе не значит, что первые состоят из вто-


рых. Поэтому в настоящее время под элементарными ча­стицами понимают такие «кирпичики» Вселенной, из ко­торых можно построить все, что нам известно в природе.

Приблизительно в 1963-1964 годах появилась гипотеза о существовании кварков - частиц, из которых состоят барионы и мезоны, являющиеся сильно взаимодействую­щими и по этому свойству объединенными общим назва­нием адронов. Кварки имеют весьма необычные свойства: обладают дробными электрическими зарядами, что не ха­рактерно для других микрочастиц, и, по-видимому, не мо­гут существовать в свободном, не связанном виде. Число различных кварков, отличающихся друг от друга величи­ной и знаком электрического заряда и некоторыми други­ми признаками, достигает уже нескольких десятков.

Основные положения современной атомистики могут быть сформулированы следующим образом:

1) атом является сложной материальной структурой,
представляет собой мельчайшую частицу химического
элемента;

2) у каждого элемента существуют разновидности атомов
(содержащиеся в природных объектах или искусственно
синтезированы);

3) атомы одного элемента могут превращаться в атомы
другого; эти процессы осуществляются либо самопроиз­
вольно (естественные радиоактивные превращения),
либо искусственным путем (посредством различных
ядерных реакций).

Таким образом, физика XX века давала все более глу­бокое обоснование идеи развития.

Краткая история изучения элементарных частиц

Первой элементарной частицей, открытой учеными, был электрон. Электрон - это элементарная частица, носящая отрицательный заряд. Он был открыт в 1897 году Дж. Дж. Томсоном. Позднее, в 1919 году Э. Резерфордом было обнаружено, что среди выбитых из атомных ядер частиц есть протоны. Затем были открыты нейтроны и нейтрино.

В 1932 году К. Андерсоном при изучении космических лучей были открыты позитрон, мюоны, К-мезоны.

С начала 50-х годов основным инструментом изучения элементарных частиц стали ускорители, что позволило обнаружить большое количество новых частиц. Исследования показали, что мир элементарных частиц очень сложен, а их свойства носят неожиданный, непредсказуемый характер.

Элементарные частицы в физике микромира

Определение 1

В узком понимании, элементарные частицы – это такие частицы, которые не состоят из других частиц. Но, в современной физике используется более широкое понимание этого термина. Так, элементарные частицы – это мельчайшие частицы материи, не являющиеся атомами и атомными ядрами. Исключение из этого правила составляет протон. Именно поэтому элементарные частицы получили название субъядерных частиц. Преобладающая часть этих частиц являются составными системами.

Элементарные частицы принимают участие во всех фундаментальных видах взаимодействия – сильном, гравитационном, слабом, электромагнитном. Гравитационное взаимодействие, ввиду малых масс элементарных частиц, часто не учитывается. Все существующие на данный момент элементарные частицы разделяются на три большие группы:

  • бозоны. Это элементарные частицы, переносящие электрослабые взаимодействия. К ним относится квант электромагнитного излучения фотон, имеющий массу покоя, равную нулю, чем обусловливается то, что скорость распространения электромагнитных волн в вакууме является предельной скоростью распространения физического воздействия. Скорость света одна из фундаментальных физических постоянных, ее значение равно 299 792 458 м/с.
  • лептоны. Эти элементарные частицы принимают участие в электромагнитных и слабых взаимодействиях. На данный момент существует 6 лептонов: электрон, мюон, мюонное нейтрино, электронное нейтрино, тяжелый τ-лептон и соответствующее нейтрино. Все лептоны имеют спин ½. Каждому лептону соответствует античастица, которая имеет ту же массу, тот же спин и другие характеристики, но отличается знаком электрического заряда. Существуют позитрон, являющийся античастицей электрона, мюон, положительно заряженный и три антинейтрино, имеющие лептонный заряд.
  • адроны. Эти элементарные частицы принимают участие в сильном, слабом и электромагнитном взаимодействиях. Адроны – это тяжелые частицы, масса которых в 200 000 раз больше массы электрона. Это самая многочисленная группа элементарных частиц. Адроны в свою очередь подразделяются на барионы – элементарные частицы со спином ½, мезоны, имеющие целочисленный спин. Кроме того, существуют так называемые резонансы. Так называют короткоживущие возбужденные состояния адронов.

Свойства элементарных частиц

Любой элементарной частице присущ набор дискретных значений и квантовых чисел. Общими характеристиками абсолютно всех элементарных частиц являются следующие:

  • масса
  • время жизни
  • электрический заряд

Замечание 1

По времени жизни элементарные частицы являются стабильными, квазистабильными, нестабильными.

Стабильными элементарными частицами являются: электрон, время жизни которого составляет 51021 лет, протон – более 1031 лет, фотон, нейтрино.

Квазистабильные – это частицы, которые распадаются в результате электромагнитного и слабого взаимодействий, время жизни квазистабильных элементарных частиц составляет более 10-20 с.

Нестабильные элементарные частицы (резонансы) распадаются в ходе сильного взаимодействия и их время жизни составляет $10^{-22} – 10^{-24}$ с.

Квантовыми числами элементарных частиц являются лептонный и барионный заряды. Эти числа являются строго постоянными величинами для всех видов фундаментальных взаимодействий. Для лептонных нейтрино и их античастиц лептонные заряды имеют противоположные знаки. Для барионов барионный заряд равен 1, для соответствующих им античастиц барионный заряд составляет -1.

Характерным для адронов является присутствие особых квантовых чисел: «странности», «красоты», «очарования». Обычными адронами являются нейтрон, протон, π-мезон.

Внутри разных групп адронов существуют семейства частиц, имеющих близкую по значению массу и сходные свойства по отношению к сильному взаимодействию, но отличающиеся электрическим зарядом. Примером этого является протон и нейтрон.

Способность элементарных частиц к взаимовпревращениям, которые происходят в результате электромагнитных и других фундаментальных взаимодействий, является их важнейшим свойством. Таким видом взаимопревращений является рождение пары, то есть образование частицы и античастицы одновременно. В общем случае, происходит образование пары элементарных частиц с противоположными барионными и лептонными зарядами.

Возможен процесс образования позитронно-электронных пар, мюонных пар. Еще одним видом взаимных превращений элементарных частиц является аннигиляция пары в результате столкновения частиц с образованием конечного числа фотонов. Как правило, происходит образование двух фотонов при суммарном спине сталкивающихся частиц, равном нулю, и трех фотонов при суммарном спине, равном 1. Данный пример является проявлением закона сохранения зарядовой четности.

При некоторых определенных условиях возможно образование связанной системы позитрония е-е+ и мюония µ+е-. таким условием может быть невысокая скорость сталкивающихся частиц. Такие нестабильные системы получили название водородоподобных атомов. Время жизни водородоподобных атомов зависит от конкретных свойств вещества. Эта особенность дает возможность использования их в ядерной химии для подробного изучения конденсированного вещества и для исследования кинетики быстрых химических реакций.



В продолжение темы:
Инсулин

Все Знаки Зодиака отличаются друг от друга. В этом нет никаких сомнений. Астрологи решили составить рейтинг самых-самых Знаков Зодиака и посмотреть, кто же из них в чем...

Новые статьи
/
Популярные