Химический состав клетки строение и функции углеводов. Пектиновые вещества подавляют размножение гнилостных бактерий в кишечнике, способствуют выведению токсических веществ из организма. Фруктовым сахаром богаты мед, фрукты, ягоды

Углеводы – многоатомные спирты, содержащие альдегидную (альдозы ) или кетогруппу (кетозы ).

Углеводы, в первую очередь целлюлоза, являются самыми распространенными органическими соединениями на Земле. В организме млекопитающих на долю углеводов приходится менее 1 % массы тела, однако их роль чрезвычайно велика. Углеводы, будучи компонентами протеогликанов, входят в состав соединительной ткани. Глико - и мукопротеины являются составной частью защитных слизей организма, входят в состав плазмы крови, формируют гликокаликс клеток. Углеводы являются основным источником энергии.

По величине молекулярной массы углеводы делят:

· на моносахариды;

· олигосахариды (2–10 моносахаридов);

· полисахариды (более 10 моносахаридов).

Моносахарид – это альдегид или кетон многоатомного алифатического спирта. Простейшими моносахаридами являются триозы: глицериновый альдегид (альдоза) и диоксиацетон(кетоза):

Моносахариды с четырьмя углеродными атомами – тетрозы, с пятью – пентозы, с шестью – гексозы, с семью– гептулозы, с восемью– октулозы.

Моносахариды – оптически активные соединения. Их оптическая активность обуславливается асимметричным углеродным атомом (т.е. таким, у которого все четыре валентности связаны с разными радикалами). Таким асимметричным атомом уже обладает самая простейшая альдоза – глицериновый альдегид. Возможны два его пространственных варианта, являющихся зеркальным отражением друг друга, которые нельзя совместить при вращении. Их называют пространственными изомерами или стереоизомерами ; у моносахаридов с большим числом хиральных центров для сравнения с глицериновым альдегидом используется конфигурация хирального центра, наиболее удаленного от оксогруппы. При этом, если конфигурация такого атома углерода совпадает с конфигурацией D- глицеринового альдегида (в его проекционной формуле ОН-группы расположены справа, dexter – правый), то в целом моносахарид относится к D -ряду, при совпадении с L -глицериновым альдегидом – к L - ряду (leavus –левый). Химические свойства у стереоизомеров одинаковы, но оптическая активность (угол вращения плоскости поляризованного света при прохождении его через раствор сахара) различна. Направление вращения плоскости поляризации света моносахаридами обозначается знаками “+” – вправо и “-“ – влево и не связано с их принадлежностью к D - и L -рядам. Знак определяется экспериментально. Так, для глицеринового альдегида правовращающей (+) оказалась D -форма.

При удлинении углеродной цепи в моносахаридах число асимметричных атомов углерода увеличивается, при этом количество стереоизомеров будет составлять 2 n (n – количество асимметричных атомов С). Так, у гексоз с 4 асимметричными углеродными атомами будет 16 стереоизомеров и 8 различных химически отличающихся соединений. Подавляющее большинство природных моносахаридов принадлежит к D- ряду. Ферменты клеток строго различают стереоизомеры, синтезируя и вызывая распад в основном D -моносахаридов.


Моносахариды могут существовать в незамкнутых и циклических формах (5-членное – фуранозное кольцо, 6-членное – пиранозное кольцо). Образование кольца приводит к появлению дополнительного центра хиральности у первого углеродного атома. Этот центр называют аномерным, а соответствующие два стереоизомера – a-и b-аномерами. У a-аномера конфигурация аномерного центра совпадает с конфигурацией “концевого” хирального центра, а у аномера –противоположна.


Химические свойства различных моносахаридов схожи в силу сходства их строения.

1.Они обладают свойствами восстановителей (благодаря наличию альдегидной группы в составе их молекулы), что дает возможность проводить качественное и количественное определения сахаров. На этом свойстве базируется о -толуидиновый метод определения уровня глюкозы в крови и реакции (Троммера, Ниландера) определения сахара в моче. Однако эти методы недостаточно специфичны, так как помимо глюкозы цветную реакцию дают и другие редуцирующие сахара.

2.При окислении моносахаридов образуются уроновые кислоты , из которых важнейшей является глюкуроновая кислота, входящая в состав основного вещества соединительной ткани.

3.Моносахариды способны образовывать эфиры ; особо важны фосфорные эфиры гексоз (глюкозы, фруктозы, галактозы) и пентоз (рибозы и дезоксирибозы), так как именно фосфорилированные сахара участвуют в реакциях метаболизма.

4.Моносахариды могут присоединять аминогруппу (образуются глюкозамины) и ацетилироваться.

NB! Моносахариды могут связываться друг с другом

Олигосахариды. Особое значение для питания человека имеют дисахариды : сахароза (глюкоза + фруктоза), мальтоза (два остатка глюкозы) и лактоза (глюкоза + галактоза). Лактоза, называемая молочным сахаром, - основной углевод молока.


Сахароза – тростниковый (свекловичный) сахар; поскольку фруктоза в составе сахарозы представлена 5-членным (фуранозным) кольцом, связанным с альдегидной группой глюкозы, фруктоза не проявляет свойств восстановителя.

Связь, возникающая между моносахаридами, называется гликозидной . Она образуется между ОН-группой С- 1одного моносахарида и ОН-группой С-4 – другого; при этом вследствие асимметрии первого углеродного атома циклической формы моносахарида могут возникать два типа конфигурации: α-гликозидная связь (если обе ОН-группы находятся в одинаковой позиции в структуре) кольца и β-гликозидная связь (если обе ОН-группы находятся в различных положениях по отношению к кольцу):

Ферменты обладают специфичностью по отношению к типу гликозидной связи, что имеет важнейшее значение в питании. Так, амилаза, расщепляющая крахмал и гликоген, является α-гликозидазой. Фермент, расщепляющий β- гликозидные связи, у человека отсутствует, поэтому целлюлоза (состоит из остатков глюкозы, связанных β- гликозидной связью) не переваривается. Термиты и некоторые другие насекомые целлюлозу усваивают.

Целлюлоза (клетчатка) относится к полисахаридам . Наряду с крахмалом она является главным углеводом растений. Важнейшим полисахаридом человека, также построенным из остатков глюкозы, является гликоген . Крахмал и гликоген представлены разветвленными цепями глюкозы. По химическому строению целлюлоза, крахмал и гликоген являются гомо полисахаридами (структура гликогена описана ниже).

Гетеро полисахариды представлены мукополисахаридами, протеогликанами и гликопротеинами (об этом – подробнее в гл.17).

NB! Углеводы – не только источники энергии

В питании основную биологическую ценность из углеводов составляют крахмал и гликоген , которые легко усваиваются организмом с высвобождением энергии при их распаде. Клетчатка и гетерополисахарид пектин , хотя и не могут расщепляться ферментами кишечника, также весьма важны в питании.

Клетчатка стимулирует перистальтику кишечника и выделение желчи, удерживает воду и увеличивает объем каловых масс, предупреждая тем самым появление запоров (профилактика рака прямой кишки), она препятствует всасыванию холестерина пищи, а адсорбция клетчаткой желчных кислот ослабляет их коканцерогенный эффект на слизистую оболочку толстого кишечника.

Пектин способен связывать тяжелые металлы, в том числе и радионуклиды, что уменьшает их поступление в ткани организма. Пектином богаты бананы, яблоки, красная и черная смородина.

Биологическая ценность углеводов не исчерпывается их энергетической значимостью (особо отметим, что глюкоза является основным поставщиком энергии для нервной ткани и коркового вещества почек, а для эритроцитов – и единственным). Они выполняют в организме пластическую (структурную) функцию, входя в состав гликопротеинов, межклеточного вещества соединительной ткани, гликокаликса плазматических мембран клеток; моносахариды рибоза и дезоксирибоза являются структурными компонентами нуклеиновых кислот.

Анаболическая функция углеводов заключается в том, что они являются основным источником субстратов для синтеза жирных кислот, а продукты распада глюкозы (a-кетокислоты) служат субстратом синтеза гликогенных аминокислот. Обезвреживающая функция углеводов также существенна: УДФ-глюкуроновая кислота в печени связывает многие токсические соединения, придавая им большую гидрофильность и способность растворяться в желчи. Исключительно важна рецепторная функция углеводов – являясь составной частью многочисленных антител, они обеспечивают “узнавание” своих антигенов; углеводы входят в состав рецепторов гормонов и нейромедиаторов, участвуя в регуляции жизнедеятельности клеток.

NB! Переваривание углеводов начинается в ротовой полости

В ротовой полости углеводы перевариваются ферментом слюны α-амилазой . Фермент расщепляет внутренние α(1→4)-гликозидные связи. При этом образуются продукты неполного гидролиза крахмала (или гликогена) – декстрины . В небольшом количестве образуется и мальтоза. В активном центре α-амилазы находятся ионы Са 2+ . Активируют фермент ионы Na + .

В желудочном соке переваривание углеводов тормозится, так как амилаза в кислой среде инактивируется.

Главное место переваривания углеводов – двенадцатиперстная кишка, куда выделяется в составе панкреатического сока α- амилаза. Этот фермент завершает расщепление крахмала и гликогена, начатое амилазой слюны, до мальтозы. Гидролиз α(1→6)-гликозидной связи катализируется ферментами кишечника амило-1,6-глюкозидазой и олиго-1,6-глюкозидазой.

Переваривание мальтозы и дисахаридов, поступающих с пищей, осуществляется в области щеточной каемки эпителиальных клеток (энтероцитов) тонкого кишечника. Дисахаридазы являются интегральными белками микроворсинок энтероцита. Они образуют полиферментный комплекс, состоящий из четырех ферментов, активные центры которых направлены в просвет кишечника.

1. Мальтаза (a-глюкозидаза) гидролизует мальтозу на две молекулы D -глюкозы.

2. Лактаза (b-галактозидаза) гидролизует лактозу на D -галактозу и D -глюкозу.

3. Изомальтаза /Сахараза (фермент двойного действия) имеет два активных центра, расположенных в разных доменах. Фермент гидролизует сахарозу до D -фруктозы и D -глюкозы, а с помощью другого активного центра фермент катализирует гидролиз изомальтозы до двух молекул D -глюкозы.

Непереносимость некоторыми людьми молока, проявляющаяся болями в животе, его вздутием (метеоризм) и поносом, обусловлена снижением активности лактазы. Можно выделить три типа недостаточности лактазы.

1. Наследственный дефицит лактазы . Симптомы нарушенной толерантности развиваются очень быстро после рождения. Кормление пищей, не содержащей лактозу, приводит к исчезновению симптомов.

2. Низкая активность лактазы первичного характера (постепенное снижение активности лактазы у предрасположенных лиц). У 15 % детей стран Европы и 80% детей стран Востока, Азии, Африки, Японии синтез данного фермента по мере их взросления постепенно прекращается и у взрослых развивается непереносимость молока, сопровождающаяся вышеуказанными симптомами. Кисломолочные продукты такими людьми переносятся хорошо.

2. Низкая активность лактазы вторичного характера . Неусвояемость молока нередко бывает следствием кишечных заболеваний (тропическая и нетропическая формы спру, квашиоркор, колит, гастроэнтерит).

Симптомы, аналогичные описанным при недостаточности лактазы, характерны для недостаточности других дисахаридаз. Лечение направлено на исключение соответствующих дисахаридов из пищевого рациона.

NB! В клетки разных органов глюкоза проникает различными механизмами

Основными продуктами полного переваривания крахмала и дисахаридов являются глюкоза, фруктоза и галактоза. Моносахариды поступают в кровь из кишечника, преодолевая два барьера: мембрану щеточной каймы, обращенную в просвет кишечника и базолатеральную мембрану энтероцита.

Известны два механизма поступления глюкозы в клетки: облегченная диффузия и вторичный активный транспорт, сопряженный с переносом ионов Na + .

Переносчики глюкозы (ГЛУТ), обеспечивающие механизм ее облегченной диффузии через клеточные мембраны, формируют семейство родственных гомологичных белков, характерным признаком структуры которых является длинная полипептидная цепь, образующая 12 трансмембранных спиральных сегментов (рис.5.1). Один из доменов, расположенный на внешней поверхности мембраны содержит олигосахарид. N - и C - концевые отделы переносчика обращены внутрь клетки. 3-й, 5-й, 7-й, и 11-й трансмембранные сегменты переносчика, по-видимому, образуют канал, по которому глюкоза поступает в клетку. Изменение конформации этих сегментов обеспечивает процесс перемещения глюкозы внутрь клетки. Переносчики этого семейства содержат 492-524 аминокислотных остатка и различаются по сродству к глюкозе. Каждый транспортер, по-видимому, выполняет специфические функции.

I. СТРОЕНИЕ УГЛЕВОДОВ

Термин "углеводы", предложенный в XIX столетии, был основан на предположении, что все углеводы содержат 2 компонента - углерод и воду, и их элементарный состав можно выразить общей формулой C m (H 2 O) n . Хотя из этого правила есть исключения и оно не абсолютно точно, тем не менее указанное определение позволяет наиболее просто характеризовать класс углеводов в целом. К тому же попытка, предпринятая Комиссией по химической номенклатуре, заменить термин "углеводы" на "глициды" не удалась. Новый термин не получил широкого признания. Термин "углеводы" укоренился и общепризнан.

Углеводы можно разделить на 3 основные группы в зависимости от количества составляющих их мономеров: моносахариды, олигосахариды и полисахариды.

А. Моносахариды

Моносахариды - производные многоатомных спиртов, содержащие карбонильную группу. В зависимости от положения в молекуле карбонильной группы моносахариды подразделяют на альдозы и кетозы.

Моносахариды по строению можно отнести к простым углеводам, так как они не гидролизуются при переваривании, в отличие от сложных, которые при гидролизе распадаются с образованием простых углеводов. Строение основных представителей моносахаридов показано на рис. 7-1.

В пище человека (фрукты, мёд, соки) содержится небольшое количество моносахаридов, в основном глюкоза и фруктоза.

Глюкоза является альдогексозой. Она может существовать в линейной и циклической формах. Циклическая форма глюкозы, предпочтительная в термодинамическом отношении, обусловливает химические свойства глюкозы. Как и все гексозы, глюкоза имеет 4 асимметричных углеродных атома, обусловливающих наличие сте-реоизомеров. Возможно образование 16 стереоизомеров, наиболее важные из которых D- и L-глюкоза. Эти типы изомеров зеркально отображают друг друга (рис. 7-2).

Расположение Н- и ОН-групп относительно пятого углеродного атома определяет принадлежность глюкозы к D- или L-ряду. В организме млекопитающих моносахариды находятся в D-конфигурации, так как к этой форме глюкозы специфичны ферменты, катализирующие её превращения. В растворе при образовании циклической формы моносахарида образуются ещё 2 изомера (α- и β-изомеры), называемые аномерами, обозначающие определённую конформа-цию Н- и ОН-групп относительно С, (рис. 7-3). У α-D-глюкозы ОН-группа располагается ниже плоскости кольца, а у β-D-глюкозы, наоборот, над плоскостью кольца.

Фруктоза является кетогексозой (кетогругша находится у второго углеродного атома). Фруктоза так же, как и глюкоза, существует в циклической форме, образуя α- и β-аномеры (рис. 7-4).

Б. Реакции моносахаридов

Присутствие гидроксильных, альдегидных и кетонных групп позволяет моносахаридам вступать в реакции, характерные для спиртов, альдегидов или кетонов. Эти реакции довольно многочисленны. В данном разделе будут описаны лишь некоторые из них, причём в основном имеющие наибольшее биологическое значение.

В этом разделе основные реакции моносахаридов рассмотрены на примере D-глюкозы (рис. 7-5), хотя надо иметь в виду, что в метаболизме углеводов принимают участие и другие моносахариды, а также их производные.

Мутаротация, или аномеризация - взаимопревращение аномерных форм моносахаридов, α- и β-формы аномеров находятся в растворе в состоянии равновесия. При достижении этого равновесия происходит мутаротация - размыкание и замыкание пиранового кольца и, соответственно, изменение расположения Н- и ОН-групп при первом углероде моносахарида.

Образование гликозидов. Гликозидная связь имеет важное биологическое значение, потому что именно с помощью этой связи осуществляется ковалентное связывание моносахаридов в составе олиго- и полисахаридов. При образовании гликозидной связи аномерная ОН-группа одного моносахарида взаимодействует с ОН-группой другого

Рис. 7-3. α- и β-аномеры D-глюкозы.


Рис. 7-4. α- и β-аномеры D-фруктозы.


моносахарида или спирта. При этом происходят отщепление молекулы воды и образование О-гликозидной связи. Все линейные олигомеры (кроме дисахаридов) или полимеры содержат мономерные остатки, участвующие в образовании двух гликозидных связей, кроме концевых остатков, образующих только одну гликозидную связь. Некоторые гликозидные остатки могут образовывать три гликозидные связи, что характерно для разветвлённых олиго- и полисахаридов. Олиго- и полисахариды могут иметь концевой остаток моносахарида со свободной аномерной ОН-группой, не использованной при образовании гликозидной связи. В этом случае при размыкании цикла возможно образование свободной карбонильной группы, способной окисляться. Такие олиго- и полисахариды обладают восстанавливающими свойствами и поэтому называются восстанавливающими, или редуцирующими (рис. 7-6).

Аномерная ОН-группа моносахарида может взаимодействовать с NН 2 -группой других соединений, что приводит к образованию N-гликозидной связи. Подобная связь присутствует в нуклеотидах и гликопротеинах (рис. 7-7).

Этерификация. Это реакция образования эфирной связи между ОН-группами моносахаридов и различными кислотами. В метаболизме углеводов важную роль играют фосфоэфиры - эфиры моносахаридов и фосфорной кислоты. В метаболизме глюкозы особое место


Рис. 7-6. Строение полисахарида. A. Образование α-1,4- и α-1,6-гликозидных связей. Б. Строение линейного полисахарида: 1 - α-1,4-гликозидные связи между мономерами; 2 - невосстанавливающий конец (невозможно образование свободной карбонильной группы у аномерного углерода); 3 - восстанавливающий конец (возможно размыкание цикла с образованием свободной карбонильной группы у аномерного углерода).

Рис. 7-7. Образование О- и N-гликозидных связей в гликопротеинах. 1 - N-гликозидная связь между амидной группой аспарагина и ОН-группой моносахарида; 2 - О-гликозидная связь между ОН-группой серина и ОН-группой моносахарида.

занимает глюкозо-6-фосфат. Образование глюкозо-6-фосфата происходит в ходе АТФ-зависимой реакции при участии ферментов, относящихся к группе киназ. АТФ в данной реакции выступает как донор фосфатной группы. Фосфоэфиры моносахаридов могут образовываться и без использования АТФ. Например, глюкозо-1-фосфат образуется из гликогена при участии Н 3 РО 4 . Физиологическое значение фос-фоэфиров моносахаридов заключается в том, что они представляют собой метаболически активные структуры. Реакция фосфорилирования моносахаридов важна для метаболизма ещё и потому, что клеточная мембрана мало проницаема для этих соединений, т.е. клетка удерживает моносахариды благодаря тому, что они находятся в фосфорилированной форме.

Окисление и восстановление. При окислении концевых групп глюкозы -СНО и -СН 2 ОН образуются 3 различных производных. При окислении группы -СНО образуется глюконовая кислота. Если окислению подвергается концевая группа -СН 2 ОН, образуется глюкуроновая кислота. А если окисляются обе концевые группы, то образуется сахарная кислота, содержащая 2 карбоксильные группы. Восстановление первого углерода приводит к образованию сахароспир-та - сорбитола.

В. Олигосахариды

Олигосахариды содержат несколько (от двух до десяти) остатков моносахаридов, соединённых гликозидной связью. Дисахариды - наиболее распространённые олигомерные углеводы, встречающиеся в свободной форме, т.е. не связанной с другими соединениями. По химической природе дисахариды представляют собой гликозиды, которые содержат 2 моносахарида, соединённые гликозидной связью в α- или β-конфигурации. В пище содержатся в основном такие дисахариды, как сахароза, лактоза и мальтоза (рис. 7-8).

Сахароза - дисахарид, состоящий из α-D-глюкозы и β-D-фруктозы, соединённых α,β-1,2-гликозидной связью. В сахарозе обе аномерные ОН-группы остатков глюкозы и фруктозы участвуют в образовании гликозидной связи. Следовательно, сахароза не относится к восстанавливающим сахарам. Сахароза - растворимый дисахарид со сладким вкусом. Источником сахарозы служат растения, особенно сахарная свёкла, сахарный тростник. Последнее объясняет возникновение тривиального названия сахарозы - "тростниковый сахар".

Лактоза - молочный сахар; важнейший дисахарид молока млекопитающих. В коровьем молоке содержится до 5% лактозы, в женском молоке - до 8%. В лактозе аномерная ОН-группа первого углеродного атома остатка D-галактозы связана β-гликозидной связью с четвёртым углеродным атомом D-глюкозы (β-1,4-связь). Поскольку аномерный атом углерода остатка глюкозы не участвует в образовании гликозидной связи, следовательно, лактоза относится к восстанавливающим сахарам.

Мальтоза поступает с продуктами, содержащими частично гидролизованный крахмал, например, солод, пиво. Мальтоза также образуется при расщеплении крахмала в кишечнике. Мальтоза состоит из двух остатков D-глюкозы, соединённых α-1,4-гликозидной связью.

Изомальтоза - промежуточный продукт, образующийся при расщеплении крахмала в кишечнике. Состоит из двух остатков D-глюкозы, но соединены эти моносахариды α-1,6-гликозидной связью.

Г. Полисахариды

Структурные различия между полисахаридами определяются:

  • строением моносахаридов, составляющих цепь;
  • типом гликозидных связей, соединяющих мономеры в цепи;
  • последовательностью остатков моносахаридов в цепи.

В зависимости от строения остатков моносахаридов полисахариды можно разделить на гомополисахариды (все мономеры идентичны) и гетерополисахариды (мономеры различны). Оба типа полисахаридов могут иметь как линейное расположение мономеров, так и разветвлённое.

В зависимости от выполняемых ими функций полисахариды можно разделить на 3 основные группы:

  • резервные полисахариды, выполняющие энергетическую функцию. Эти полисахариды служат источником глюкозы, используемым организмом по мере необходимости. Резервная функция этих углеводов обеспечивается их полимерной природой. Полисахариды


  • менее растворимы, чем моносахариды, следовательно они не влияют на осмотическое давление и поэтому могут накапливаться в клетке, например, крахмал - в клетках растений, гликоген - в клетках животных;
  • структурные полисахариды, обеспечивающие клеткам и органам механическую прочность (см. раздел 15);
  • полисахариды, входящие в состав межклеточного матрикса, принимают участие в образовании тканей, а также в пролиферации и дифференцировке клеток. Полисахариды межклеточного матрикса водорастворимы и сильно гидратированы (см. раздел 15).

В пище человека в основном содержатся полисахариды растительного происхождения - крахмал, целлюлоза. В меньшем количестве поступает полисахарид животных - гликоген.

Крахмал - наиболее важный углеводный компонент пищевого рациона. Это резервный полисахарид растений, содержащийся в наибольшем количестве (до 45% от массы сухого вещества) в зёрнах злаков (пшеница, кукуруза, рис и др.), а также луковицах, стеблях и клубнях растений (в картофеле примерно 65%). Крахмал - разветвлённый полисахарид, состоящий из остатков глюкозы (гомогликан). Он находится в клетках растений в виде гранул, практически нерастворим в воде.

Крахмал состоит из амилозы и амилопектина (рис. 7-9). Амилоза - неразветвлённый полисахарид, включающий 200-300 остатков глюкозы, связанных α-1,4-гликозидной связью. Благодаря α-конфигурации глюкозного остатка, полисахаридная цепь имеет конформацию спирали. Синяя окраска при добавлении йода к раствору крахмала обусловлена наличием такой спирали. Амилопектин имеет разветвлённую структуру. В местах ветвления остатки глюкозы соединены α-1,6-гликозидными связями. Линейные участки содержат примерно 20-25 остатков глюкозы. При этом формируется древовидная структура, в которой имеется лишь одна аномерная ОН-группа. Крахмал - высокомолекулярное соединение, включающее сотни тысяч остатков глюкозы. Его молекулярная масса составляет порядка 10 5 -10 8 Д.

Целлюлоза (клетчатка) - основной структурный полисахарид растений. Это самое распространённое органическое соединение на земле. Доля целлюлозы в клеточных стенках растений составляет 40-50%. Целлюлоза имеет молекулярную массу порядка 10 6 Д, длина молекулы может доходить до 6-8 мкм.

Целлюлоза - линейный полисахарид гомогликан, построенный из остатков глюкозы, соединённых между собой β-1,4-гликозидными связями. Пищеварительная система человека не имеет ферментов, гидролизующих β-связи в полисахаридах. Поэтому целлюлоза - неиспользуемый углевод, но этот пищевой компонент необходим для нормального протекания переваривания.

Гликоген - полисахарид животных и человека. Так же, как крахмал в растениях, гликоген в клетках животных выполняет резервную функцию, но, так как в пище содержится лишь небольшое количество гликогена, он не имеет пищевого значения.


Гликоген представляет собой структурный аналог крахмала, но имеет большую степень ветвления: примерно на каждые 10 остатков глюкозы приходится одна α-1,6-гликозидная связь.

В химии и биологии к углеводам относят множество органических соединений. В самом общем смысле к этому классу можно отнести сахара и производные от них вещества, которые получаются при гидролизе. Углеводы являются неотъемлемой составляющей всех органических соединений. Обо всем разнообразии проявления этих веществ может рассказать классификация углеводов.

Биология

Клеткам живых организмов углеводы нужны в качестве аккумуляторов и источников энергии. В сухом веществе растений содержится до 90 % углеводов. Представители фауны также имеют в составе своих клеток углеводы - до 20% от общей массы сухого вещества. Классификация углеводов стандартизирует эти высокомолекулярные соединения и представляет их в наглядном виде. Понимание структуры углеводов, внутреннего строения этих соединений - ключ к постижению основ всего живого, к пониманию самой тайны жизни. Важной частью процесса познания этих веществ является классификация углеводов.

Схема

Все известные углеводы подразделяют на три большие группы:

Моносахариды;

Дисахариды;

Полисахариды.

Все три группы имеют различные физико-химические характеристики. Классификация и строение углеводов базируется именно на этих трех китах.

Моносахариды

Такое название носят простейшие углеводы, которые расщепляются водой на простейшие органические соединения. Типичным примером моносахарида является глюкоза. Химический состав этого вещества выражается формулой C 2 H 12 O 5 . Классификация углеводов отводит глюкозе почетное первое место. Это вещество - важнейшее из моносахаридов, содержится в фруктовых соках, в крови животных и человека. В чистом виде глюкоза представляет собой белые полупрозрачные кристаллы со сладким выраженным вкусом. Мышечная работа млекопитающих совершается за счет энергии, получаемой при окислении глюкозы. Внутреннее строение этого вещества выражается структурной формулой :

Глюкоза может быть получена при гидролизе различных полисахаридов - крахмала или целлюлозы. Она применяется как компонент усиленного питания и как лекарство.

Фруктоза - еще один моносахарид, который встречается наравне с глюкозой в различных фруктовых и ягодных соках, в смеси с глюкозой входит в состав меда. Выглядит так же, как и ее соседка, но на вкус значительно слаще. Схема строения фруктозы представлена на рисунке:

Классификация углеводов относит моносахариды к той же группе, что и альдегидо- и кеноспирты. Все эти вещества могут вступать в реакцию не только в открытых цепных формах, но и в циклических. Циклическая глюкоза может существовать в видах, которые отличаются между собой пространственным расположением гидроксогруппы при первом углеродном атоме. Глюкоза в составе натуральных продуктов имеет циклическую α-формулу. При растворении в воде эта циклическая связь превращается в цепную, а затем - и в связь по β-формуле. Стандартный водный раствор глюкозы содержит три равновесных разновидности этого вещества.

Дисахариды

Так называются углеводы, которые при нагревании водных растворов в присутствии минеральных кислот или ферментов подвергаются гидролизу и распадаются на две молекулы моносахаридов. Наиболее распространенным элементом из этой группы классификация углеводов считает сахарозу.

Сахароза содержится в свекловичном и тростниковом сахаре. Ее химическая формула: C 12 H 22 O 11 . Значительное количество этого вещества присутствует в березовом и кленовом соке, в некоторых фруктах. Сахароза - один из важнейших пищевых продуктов. При гидролизе она распадается на молекулы глюкозы и фруктозы - смесь получаемых элементов относится к инвертным сахарам, которые также изучает классификация углеводов. Схема внутреннего строения сахарозы представлена ниже:

Полисахариды

В третью группу классификация углеводов относит вещества, при распаде которых образуются дисахариды, а после - множество (сотни и тысячи) молекул моносахаридов. Классификация и функции углеводов этого раздела существенно отличаются от своих более легких братьев - они не имеют сладкого вкуса и в большинстве своем нерастворимы в воде. Важнейшими представителями этой группы являются целлюлоза (клетчатка) и крахмал. Молекулы этих углеводов выстроены из длинных цепочек с повторяющимися звеньями C 6 H 10 O 5 . Эти звенья - остатки циклических форм глюкозы, которые потеряли молекулу воду и связаны между собой в шестичлены. Поэтому классификация углеводов дает одинаковую формулу и для целлюлозы, и для крахмала, которая выражается, как (C 6 H 10 O 5) х. Отличие заключается в том, что крахмал состоит из звеньев α-формулы, а целлюлоза - из β-формулы глюкозы.

Крахмал описывается формулой (C 6 H 10 O 5) х, где переменная может достигать значений в 4-5 тыс. Это вещество образуется в зеленых побегах различных растений путем фотосинтеза. Он может откладываться «про запас» в клубнях, зернах и корневищах.

Пищеварительный тракт человека перерабатывает крахмал посредством гидролиза в присутствии ферментов и расщепляет его до состояния глюкозы, которая затем усваивается человеком.

Классификация и функции углеводов сложного типа

Целлюлозой называется волокнистое вещество, которое является составной частью оболочек клеток различных растений. Формула ее аналогична формуле крахмала - (C 6 H 10 O 5) х. Количество повторения звеньев цепи достигает 12 тысяч. Наиболее чистая природная целлюлоза содержится в хлопковом волокне - до 90% от сухого вещества. В древесине целлюлоза занимает около половины от сухого веса вещества, В хвойных древесных породах этот элемент присутствует наравне со своими спутниками - лигнином и гемицеллюлозой. Целлюлоза и крахмал не растворяются в холодной воде. При нагревании крахмал набухает, образуя при этом коллоидный раствор.

Целлюлоза же не растворяется в воде даже при высокой температуре. Она не растворяется в спиртах, устойчива к воздействию щелочей и слабых окислителей. Гидролиз целлюлозы возможен лишь при растворении ее в концентрированных минеральных кислотах, например в серной. При нагревании такого раствора целлюлоза расщепляется, образуя вязкий раствор. Конечным продуктом данной реакции являются моносахариды.

Значение углеводов

Классификация и строение углеводов изучается многими смежными науками. Значение этих органических веществ в медицине, химической, пищевой, обрабатывающей промышленности достаточно высоко. Можно надеяться, что вышеприведенная классификация углеводов с примерами даст общее представление о природе этих веществ и об их важнейшей роли в хозяйственной деятельности человека.

Углеводы – обширный класс органических соединений. В клетках живых организмов углеводы являются источниками и аккумуляторами энергии, в растениях (на их долю приходится до 90 % сухого вещества) и некоторых животных (до 20 % сухого вещества) выполняют роль опорного (скелетного) материала, входят в состав многих важнейших природных соединений, выступают в качестве регуляторов ряда важнейших биохимических реакций. В соединении с белками и липидами углеводы образуют сложные высокомолекулярные комплексы, представляющие основу субклеточных структур, а следовательно, основу живой материи. Они входят в состав природных биополимеров – нуклеиновых кислот, участвующих в передаче наследственной информации.

Углеводы образуются в растениях в ходе фотосинтеза, благодаря ассимиляции хлорофиллом, под действием солнечных лучей, углекислого газа, содержащегося в воздухе, а образующийся при этом кислород выделяется в атмосферу. Углеводы являются первыми органическими веществами в кругообороте углерода в природе.

Все углеводы делят на две группы: простые и сложные. Простыми углеводами (моносахариды, монозы) называют углеводы, которые не способны гидролизоваться с образованием более простых соединений.

Сложные углеводы (полисахариды, полиозы) – углеводы, способные гидролизоваться на более простые. У них число атомов углерода не равно числу атомов кислорода. Сложные углеводы очень разнообразны по составу, молекулярной массе, а следовательно, и по свойствам. Их делят на две группы: низкомолекулярные (сахароподобные или олигосахариды) от греч. oligos – малый, немногочисленный и высокомолекулярные (несахароподобные полисахариды). Последние – соединения с большой молекулярной массой, в состав которых могут входить остатки сотен тысяч простых углеводов.

Молекулы простых углеводов – моноз – построены из неразветвленных углеродных цепей, содержащих различное число атомов углерода. В состав растений и животных входят главным образом монозы с 5 и 6 углеродными атомами – пентозы и гексозы. У атомов углерода расположены гидроксильные группы, а один из них окислен до альдегидной (альдозы) или кетонной (кетозы) группы.

В водных растворах, в том числе в клетке, монозы из ациклческих (альдегидо-кетоно) форм переходят в циклические (фуранозные, пиранозные) и обратно. Этот процесс получил, название динамической изомерии – таутомерии.

Циклы, которые входят в состав молекул моноз, могут быть построены из 5 атомов (из них 4 атома углерода и один кислорода) – они получили название фуранозных, или из 6 атомов (5 атомов углерода и один кислорода), их называют пиранозными.

В молекулах моносахаридов имеются углеродные атомы, связанные с четырьмя различными заместителями. Они получили название асимметрических и обозначены в формулах глюкозы и фруктозы звездочками. Наличие в молекулах моноз асимметричных углеродных атомов приводит к появлению оптических изомеров, обладающих способностью вращать плоскополяризованный луч света. Направление вращения обозначают знаком «+» (правое вращение) и «-» (левое вращение). Важной характеристикой моноз является удельное вращение. Угол вращения плоскости поляризации свежеприготовленного раствора моносахарида вследствие указанных ранее таутомерных превращений при стоянии изменяется, пока не достигнет некоторой постоянной величины. Изменение угла вращения растворов Сахаров при стоянии получило название мутаротации. Например, для глюкозы это изменение происходит от +106 до +52,5°; обычно это изображают так: +106 ° -»- +52,5 °.

В растениях чаще содержится D-форма моноз.

Наличие спиртовых, альдегидных или кетонных групп, а также появление в циклических формах моноз группы ОН с особыми свойствами (гликозидный, полуацетальный гидроксил) определяет химическое поведение этих соединений, а следовательно, и превращения их в технологических процессах. Моносахариды – сильные восстановители – осаждают серебро из аммиачных растворов оксида серебра (знакома всем из школьного курса химии реакция «серебряного зеркала» и оксид меди Cu20 при взаимодействии с раствором Фелинг (Фелингова жидкость), который приготавливают смешиванием равных объемов водного раствора сульфата меди и щелочного раствора натрий-калиевой соли винной кислоты. Последняя реакция используется для определения содержания восстанавливающих Сахаров (метод Бертрана) по количеству выпавшего осадок оксида меди СигО.

Фурфурол – один из компонентов, который входит в состав веществ, создающих аромат хлеба.

Большое значение в пищевой технологии имеет взаимодействие моноз и других восстанавливающих Сахаров (в реакции могут участвовать и другие соединения, имеющие карбонильную группу, – альдегиды, кетоны и т. д.) с соединениями, содержащими аминогруппу – NH2: первичными аминами, аминокислотами, пептидами, белками.

Особое место в превращениях моносахаридов занимают два процесса: дыхание и брожение.

Дыхание – это экзотермический процесс ферментативной окисления моноз до воды и углекислого газа.

На каждый моль израсходованной глюкозы (180 г) выделяется 2870 кДж (672 ккал) энергии. Дыхание наряду с фотосинтезом является важнейшим источником энергии для живых организмов.

Различают аэробное (кислородное) дыхание – дыхание при достаточном количестве воздуха (схема этого процесса был; нами только что рассмотрена) и анаэробное (бескислородное дыхание, являющееся в сущности спиртовым брожением:

При этом на 1 моль израсходованной глюкозы выделяется 118,0 кДж (28,2 ккал) энергии.

Спиртовое брожение, протекающее под влиянием микроорганизмов, играет исключительную роль в производстве спирта вина, хлебобулочных изделий. Наряду с главными продуктами спиртом и диоксидом углерода – при спиртовом брожении мона образуются разнообразные побочные продукты (глицерин, янтарная кислота, уксусная кислота, изоамиловый и изопропиловый спирты и др.), существенно влияющие на вкус и аромат пищевых продуктов. Кроме спиртового брожения существует молочнокислое брожение моноз:

Это основной процесс при получении простокваши, кефира и других молочнокислых продуктов, квашении капусты.

Брожение моноз может приводить к образованию масляной кислоты (маслянокислое брожение).

Моносахариды – твердые кристаллические вещества, они гигроскопичны, хорошо растворяются в воде, образуя сиропы, трудно растворимы в спирте. Большинство из них имеют сладкий вкус. Рассмотрим наиболее важные моносахариды.

Гексозы. Главными представителями этой группы моноз являются глюкоза и фруктоза.

Глюкоза (виноградный сахар, декстроза) широко распространена в природе: содержится в зеленых частях растений, в виноградном соке, семенах и фруктах, ягодах, меде. Входит в состав важнейших полисахаридов: сахарозы, крахмала, клетчатки, многих гликозидов. Получают глюкозу гидролизом крахмала и клетчатки. Сбраживается дрожжами.

Фруктоза (фруктовый сахар, левулеза) в свободном состоянии содержится в зеленых частях растений, нектаре цветов, семенах, меде. Входит в состав сахарозы, образует высокомолекулярный полисахарид инсулин. Сбраживается дрожжами. Получают из сахарозы, инсулина, трансформацией других моноз методами биотехнологии.

Глюкоза и фруктоза играют большую роль в пищевой промышленности, являясь важным компонентом продуктов питания и исходным материалом при брожении.

Пентозы. В природе широко распространены L (+)-арабиноза, рибоза, ксилоза, главным образом в качестве структурных компонентов сложных полисахаридов: пентозанов, гемицеллюлоз, пектиновых веществ, а также нуклеиновых кислот и других природных

Горький и жгучий вкус, который характерен и из-за которого ценятся горчица и хрен, обусловлен образованием при гидролизе эфирногорчичного масла. Содержание калиевой соли синигрина в горчице и хрене достигается 3-3,5 %.

В косточках персика, абрикосов, слив, вишен, яблок, груш, в листьях лавровишни, семенах горького миндаля содержится гликозид амигдалин. Он представляет собой сочетание дисахарида гентиобиозы и агликона, включающего остаток синильной кислоты и бензальдегида.

L (+)-арабиноза, не сбраживается дрожжами. Содержится в свекле.

Рибоза – важный структурный компонент рибонуклеиновых кислот.

D (+)-ксилоза – структурный компонент содержащихся в соломе, отрубях, древесине полисахаридов ксилозанов. Получаемую при гидролизе ксилозу используют в качестве подслащивающего вещества для больных диабетом.

Гликозиды. В природе, главным образом в растениях, распространены производные Сахаров, получившие название гликозидов. Молекула гликозида состоит из двух частей: сахара, он обычно представлен моносахаридом, и агликона («не-сахара»).

В качестве агликона в построении молекул гликозидов могут принимать участие остатки спиртов, ароматических соединений, стероидов и т. д. Многие из гликозидов имеют горький вкус и специфический запах, с чем и связана их роль в пищевой промышленности, некоторые из них обладают токсическим действием, об этом следует помнить.

Гликозид синигрин – содержится в семенах черной и сарептской горчицы, корнях хрена, в рапсе, придавая им горький вкус и специфический запах. Под влиянием содержащихся в семенах горчицы ферментов этот гликозид гидролизуется.

При кислотном или ферментативном гидролизе образуются две молекулы глюкозы, синильная кислота и бензальдегид. Содержащаяся в амигдалине синильная кислота может вызвать отравление.

Гликозид ванилина содержится в стручках ванили (до 2 % на сухое вещество), при его ферментативном гидролизе образуются глюкоза и ванилин:

Ванилин – ценное душистое вещество, применяемое в пищевой и парфюмерной промышленности.

В картофеле, баклажанах содержатся гликозиды салонины, которые могут придавать картофелю горький, неприятный вкус, особенно, если плохо удаляются наружные его слои.

Полисахариды (сложные углеводы). Молекулы полисахаридов построены из различного числа остатков моноз, которые образуются при гидролизе сложных углеводов. В зависимости от этого их делят на низкомолекулярные и высокомолекулярные полисахариды. Из первых особое значение имеют дисахариды, молекулы которых построены из двух одинаковых или разных остатков моноз. Одна из молекул моноз всегда участвует в построении молекулы дисахарида своим полуацетальным гидроксилом, другая – полуацетальным или одним из спиртовых гидроксилов. Если в образовании молекулы дисахарида монозы участвуют своими полуацетальными гидроксилами, образуется не-восстанавливающий дисахарид, во втором – восстанавливающий. Это одна из главных характеристик дисахаридов. Важнейшая реакция дисахаридов – гидролиз.

Более подробно рассмотрим строение и свойства мальтозы, сахарозы, лактозы, которые широко распространены в природе – которые играют важную роль в пищевой технологии.

Мальтоза (солодовый сахар). Молекула мальтозы состоит из двух остатков глюкозы. Она является восстанавливающим дисахаридом:

Мальтоза довольно широко распространена в природе, она содержится в проросшем зерне и особенно в больших количествах в солоде и солодовых экстрактах. Отсюда и ее название (от лат. maltum – солод). Образуется при неполном гидролизе крахмала разбавленными кислотами или амилолитическимн ферментами, является одним из основных компонентов крахмальной патоки, широко используемой в пищевой промышленности. При гидролизе мальтозы образуются две молекулы глюкозы.

Этот процесс играет большую роль в пищевой технологи, например при брожении теста как источник сбраживаемых сахаров.

Сахароза (тростниковый сахар, свекловичный сахар). При ее гидролизе образуются глюкоза и фруктоза.

Следовательно, молекула сахарозы состоит из остатков глюкозы и фруктозы. В построении молекулы сахарозы глюкоза и фруктоза участвуют своими полуацетальными гидроксилами. Сахароза – невосстанавливающий сахар.

Сахароза – наиболее известный и широко применяемый в питании и пищевой промышленности сахар. Содержится в листьях, стеблях, семенах, плодах, клубнях растений. В сахарной свекле от 15 до 22 % сахарозы, сахарном тростнике -12-15 %, это основные источники ее получения, отсюда же возникли и ее названия – тростниковый или свекловичный сахар.

В картофеле 0,6 % сахарозы, луке – 6,5, моркови – 3,5, свекле – 8,6, дыне – 5.9, абрикосах и персиках – 6,0, апельсинах – 3,5, винограде – 0,5 %. Ее много в кленовом и пальмовом соке, кукурузе – 1,4-1,8 %.

Сахароза кристаллизуется без воды в виде больших моноклинических кристаллов. Удельное вращение водного ее раствора -(-66,5°. Гидролиз сахарозы сопровождается образованием глюкозы и фруктозы. Фруктоза обладает более сильным левым вращением (-92°), чем глюкоза правым (+ 52,5°), поэтому при гидролизе сахарозы угол вращения изменяется. Гидролиз сахарозы получил название инверсии (обращение), а смесь образующихся разных количеств глюкозы и фруктозы – инвертным сахаром. Сахароза сбраживается дрожжами (после гидролиза), а при нагревании выше температуры плавления (160-186 °С) карамелизуется, т. е. превращается в смесь сложных продуктов: карамелана и других, теряя при этом воду. Эти продукты под названием «колер» используют при производстве напитков и в коньячном производстве для окраски готовых продуктов.

Лактоза (молочный сахар). Молекула лактозы состоит из остатков галактозы и глюкозы и обладает восстанавливающими свойствами.

Лактозу получают из молочной сыворотки отхода при производстве масла и сыра. В коровьем молоке содержится 46 % лактозы. Отсюда и возникло ее название (от лат. lactum молоко). Водные растворы лактозы мутаротируют, их удельное вращение после завершения этого процесса +52,2 °. Лактоза гигроскопична. Не участвует в спиртовом брожении, но под влиянием молочнокислых дрожжей гидролизуется с последующим сбраживанием образовавшихся продуктов в молочную кислоту.

Высокомолекулярные несахароподобные полисахариды построены из большого числа (до 6-10 тыс.) остатков моноз. Они делятся на гомополисахариды, построенные из молекул моносахаридов только одного вида (крахмал, гликоген, клетчатка) гетерополисахариды, состоящие из остатков различных моносахаридов.

Крахмал (CeHioOs), – резервный полисахарид, главный компонент зерна, картофеля и многих видов пищевого сырья. Наиболее важный по своей пищевой ценности и использованию в пищевой промышленности несахароподобный полисахарид.

Содержание крахмала в пищевом сырье определяется культурой, сортом, условиями произрастания, спелостью. В клетках крахмал образует зерна (гранулы, рис. 8) размером от 2 до 180 мкм. Особенно крупные зерна у крахмала картофеля. Форма зерен зависит от культуры, они могут быть простыми (пшеница, рожь) или сложными, состоящими их более мелких зерен. От особенностей строения и размеров крахмальных зерен и, естественно, от состава крахмала зависят его физико-химические свойства. Крахмал – смесь полимеров двух типов, построенных из остатков глюкопиранозы: амилозы и амилопектина. Их содержание в крахмале зависит от культуры и колеблется от 18 до 25 % амилазы и 75-82 % амилопектина.

Амилоза – линейный полимер, построенный из остатков глюкопиранозы, связь 1-4а. Ее молекула содержит от 1000 до 6000 остатков глюкозы. Молекулярная масса 16 000-1000 000. Амилоза имеет спиралевидное строение. Внутри ее образуется канал диаметром 0,5 нм, куда могут входить молекулы других соединений, например иода, который окрашивает ее в синий цвет.

Амилопектин – полимер, содержащий от 5000 до 6000 остатков глюкозы. Молекулярная масса до 106. Связи между остатками a-D-глюкопиранозы 1-4a, 1-6а, 1-За. Неразветвленные участки состоят из 25-30 остатков глюкозы. Молекула амилопектина имеет сферическую форму. Амилопектин образует с иодом фиолетовую окраску с красноватым оттенком. В составе крахмала содержится до 0,6 % высокомолекулярных жирных кислот и 0,2-0,7 % минеральных веществ.

В ходе технологической обработки под действием влаги и тепла крахмал, крахмалсодержащее сырье способны адсорбировать влагу, набухать, клейстеризоваться, подвергаться деструкции. Интенсивность этих процессов зависит от вида крахмала, режимов обработки, характера катализатора.

Крахмальные зерна при обычной температуре не растворяются в воде, при повышении температуры набухают, образуя вязкий коллоидный раствор. При его охлаждении образуется устойчивый гель (всем нам хорошо знакомый крахмальный клейстер). Этот процесс получил название клейстеризации крахмала. Крахмалы различного происхождения клейстеризуются при различных температурах (55-80 °С). Способность крахмала набуханию и клейстеризации связана с содержанием амилозной фракции. Под действием ферментов или кислот при нагревании крахмал присоединяет воду и гидролизуется. Глубина гидролиза зависит от условий его проведения и вида катализатора (кислота, ферменты).

В последние годы все более широкое применение в пищевой промышленности находят модифицированные крахмалы, свойства которых в результате разнообразных видов воздействия (физического, химического, биологического) отличаются от свойств обычных крахмалов. Модификация крахмала позволяет существенно изменить его свойства (гидрофильность, способность к клейстеризации, студнеобразование), а следовательно, и направление его использования. Модифицированные крахмалы нашли применение в хлебопекарной и кондитерской промышленности, в том числе для получения безбелковых продуктов питания.

Клетчатка – самый распространенный высокомолекулярный полимер. Это основной компонент и опорный материал клеточных стенок растений. Содержание клетчатки в волосках семян хлопчатника 98 %, древесине – 40-50, зернах пшеницы – 3, ржи и кукурузе – 2,2, сое – 3,8, подсолнечнике с плодовой оболочкой – до 15 %. Молекулы клетчатки с помощью водородных связей объединены в мицеллы (пучки), состоящие из параллельных цепей. Клетчатка нерастворима в воде и при обычных условиях не гидролизуется кислотами. При повышенных температурах при гидролизе образуется в качестве конечного продукта D-глюкоза. В ходе гидролиза постепенно идет деполимеризация крахмала и образование декстринов, затем мальтозы, а при полном гидролизе глюкозы. Деструкция крахмала, которая начинается с набухания и разрушения крахмальных зерен и сопровождается его деполимеризацией (частичной или более глубокой) до образования в качестве конечного продукта глюкозы, происходит при получении многих пищевых продуктов – патоки, глюкозы, хлебобулочных изделий, спирта и т. д.

Гликоген (животный крахмал) состоит из остатков глюкозы. Важный энергетический запасной материал животных (в печени до 10 %, мышцах 0,3-1 % гликогена) присутствует в некоторых растениях, например в зернах кукурузы. По своему строению напоминает амилопектин, но более разветвлен и его молекула имеет более компактную упаковку. Она построена из остатков a-D-глюкопиранозы, связи между ними 1-4а (до 90%), 1-6а (до 10%) и 1-За (до 1 %).

Продукты гидролиза, содержащие клетчатку отходов, которые образуются при переработке древесины, широко используют для получения кормовых дрожжей, этилового спирта и других продуктов.

Ферменты желудочно-кишечного тракта человека не расщепляют целлюлозу, которую относят к балластным веществам. Роль их в питании будет рассмотрена дальше. В настоящее время под действием ферментного комплекса целлюлаз уже в промышленных условиях получают продукты гидролиза клетчатки, в том числе глюкозу. Учитывая, что возобновляемые запасы целлюлозосодержащего сырья практически безграничны, ферментативный гидролиз клетчатки является очень перспективным путем получения глюкозы.

Гемицеллюлозы – это группа высокомолекулярных полисахаридов, образующих совместно с целлюлозой клеточные стенки растительных тканей. Присутствуют главным образом в периферийных оболочечных частях зерна, соломе, кукурузных початках, подсолнечной лузге. Содержание их зависит от сырья и достигает 40% (кукурузные початки). В зерне пшеницы и ржи до 10 % гемицеллюлоз. В их состав входят пентозаны, образующие при гидролизе пентозы (арабинозу ксилозу), гексозаны, гидролг зующиеся до гексоз (манноз, галактоза, глюкоза, фруктоза и группа смешанных полисахаридов, гидролизующихся до пентоз, гексоз и уроновых кислот. Гемицеллюлозы обычно имеют разветвленное строение; порядок расположения моноз внутри полимерной цепи неодинаков. Связь их Друг с другом осуществляется с участием полуацетального гидроксила и гидроксильных групп у 2, 3, 4, 6-го углеродных атомов. Они растворяются в щелочных растворах. Кислотный гидролиз гемицеллюлозы протекает значительно легче, чем целлюлозы. В гемицеллюлозы иногда включают группу агара (смесь сульфированных полисахаридов – агарозы и агаропектина) – полисахарида, присутствующего в водорослях и применяемого в кондитерской промышленности. Гемицеллюлозы широко применяют для получения разнообразных технических, медицинских, кормовых и пищевых продуктов, среди которых необходимо выделить агар и агарозу, ксилит. Гемицеллюлозы относят к группе пищевых волокон, необходимых для нормального пищеварения.

Пектиновые вещества – это группа высокомолекулярных полисахаридов, входящих в состав клеточных стенок и межклеточных образований растений совместно с целлюлозой, гемицеллюлозой, лигнином. Содержится в клеточном соке. Наибольшее количество пектиновых веществ находится в плодах и корнеплодах. Получают их из яблочных выжимок, свеклы, корзинок подсолнечника. Различают нерастворимые пектины (протопектины), которые входят в состав первичной клеточной стенки и межклеточного вещества, и растворимые, содержащиеся в клеточном соке. Молекулярная масса пектина изменяется от 20 ООО до 50 000. Основным структурным компонентом его является галактуроновая кислота, из молекул которой строится главная цепь, а в состав боковых цепей входят 1-арабиноза, D-галактоза и рамноза. Часть кислотных групп этерифицирована метиловым спиртом, часть существует в виде солей. При созревании и хранении плодов нерастворимые формы пектина переходят в растворимые, с этим связано размягчение плодов при созревании и хранении. Переход нерастворимых форм в растворимые происходит при тепловой обработке растительного сырья, осветлении плодово-ягодных соков. Пектиновые вещества способны образовывать гели в присутствии кислоты и сахара при соблюдении определениях соотношений. На этом основано их использование в качестве студнеобразующего вещества в кондитерской и консервной промышленностн для производства мармелада, пастилы, желе и джемов, а также в хлебопечении, сыроделии.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц – олигосахариды, а более десяти – полисахариды.

Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях.

Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение – L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН 2 ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы глюкоза , фруктоза , манноза и галактоза – по стереохимической конфигурациям относят к соединениям D-ряда.

Полисахари́ды – общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров моносахаридов . С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.


https :// ru . wikipedia . org / wiki /Углеводы

1.6. Липиды - номенклатура и строение. Полиморфизм липидов.

Липи́ды – обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот , сложных – из спирта, высокомолекулярных жирных кислот и других компонентов.

Классификация липидов

Простые липиды – это липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

Сложные липиды – это липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) и другие химические элементы. Чаще всего: фосфор (Р), серу (S), азот (N).


https :// ru . wikipedia . org / wiki /Липиды

Литература:

1) Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;

2) Маркман А. Л., Химия липидов, в. 12, Таш., 1963 – 70;

3) Тютюнников Б. Н., Химия жиров, М., 1966;

4) Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.

1.7. Биологические мембраны. Формы агрегации липидов. Понятие о жидко-кристаллическом состоянии. Латеральная диффузия и флип-флоп.

Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндо-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Схема строения мембраны: а – трехмерная модель; б – плоскостное изображение;

1 – белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2 – слои молекул липидов; 3 – гликопротеины; 4 – гликолипиды; 5 – гидрофильный канал, функционирующий как пора.

Функции биологических мембран следующие:

1) Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2) Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3) Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).

4) Являются катализаторами (обеспечение примембранных химических процессов).

5) Участвуют в преобразовании энергии.

http :// sbio . info / page . php ? id =15

Латеральная диффузия – это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом рас­положенные молекулы липидов скачком меняются местами, и вследствие таких последовательных перескоков из одного мес­та в другое молекула перемещается вдоль поверхности мемб­раны.

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток – флюоресцирующих молекулярных групп. Флуоресцентные метки делают флюоресцирующими молекулы, дви­жение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами.

Флип-флоп – это диффузия молекул мембранных фосфолипидов поперек мембраны.

Скорость перескоков молекул с одной поверхности мембра­ны на другую (флип-флоп) определена методом спиновых ме­ток в опытах на модельных липидных мембранах – липосомах.

Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми мет­ками. Липосомы подвергались воздействию аскорбиновой кис­лоты, вследствие чего неспаренные электроны на молекулах пропадали: парамагнитные молекулы становились диамагнит­ными, что можно было обнаружить по уменьшению площади под кривой спектра ЭПР.

Таким образом, перескоки молекул с одной поверхности бислоя на другую (флип-флоп) совершаются значительно медлен­нее, чем перескоки при латеральной диффузии. Среднее время, через которое фосфолипидная молекула совершает флип-флоп (Т ~ 1час), в десятки миллиардов раз больше среднего времени, характерного для перескока молекулы из одного места в сосед­нее в плоскости мембраны.

Понятие о жидко-кристаллическом состоянии

Твердое тело может быть как кристаллическим , так и аморфным. В первом случае имеется дальний порядок в расположении частиц на расстояниях, много превышающих межмолекулярные расстояния (кристаллическая решетка). Во втором – нет дальнего порядка в расположении атомов и молекул.

Различие между аморфным телом и жидкостью состоит не в наличии или отсутствии дальнего порядка, а в характере движения частиц. Молекулы жидкости и твердого тела совершают колебательные (иногда вращательные) движения около положения равновесия. Через некоторое среднее время («время оседлой жизни») происходит перескок молекул в другое положение равновесия. Различие заключается в том, что «время оседлой жизни» в жидкости намного меньше, чем в твердом состоянии.

Липидные двухслойные мембраны при физиологических условиях – жидкие, «время оседлой жизни» фосфолипидной молекулы в мембране составляет 10 −7 – 10 −8 с.

Молекулы в мембране расположены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты примерно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных голов.

Физиологическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическим состоянием. Жидкие кристаллы могут образовываться не во всех веществах, а в веществах из «длинных молекул» (поперечные размеры которых меньше продольных). Могут существовать различные жидкокристаллические структуры: нематическая (нитевидная), когда длинные молекулы ориентированы параллельно друг другу; смектическая – молекулы параллельны друг другу и располагаются слоями; холестическая – молекулы располагаются параллельно друг другу в одной плоскости, но в разных плоскостях ориентации молекул разные.

http :// www . studfiles . ru / preview /1350293/

Литература: Н.А. Лемеза, Л.В.Камлюк, Н.Д. Лисов. «Пособие по биологии для поступающих в ВУЗы».

1.8. Нуклеиновые кислоты. Гетероциклические основания, нуклеозиды, нуклеотиды, номенклатура. Пространственная структура нуклеиновых кислот - ДНК, РНК (тРНК, рРНК, мРНК). Рибосомы и ядро клетки. Методы определения первичной и вторичной структуры нуклеиновых кислот (секвенирование, гибридизация).

Нуклеиновые кислоты – фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации.

Нуклеиновые кислоты представляют собой биополимеры. Их макромолекулы состоят из неоднократно повторяющихся звеньев, которые представлены нуклеотидами. И их логично назвали полинуклеотидами. Одной из главных характеристик нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида (структурного звена нуклеиновых кислот) входят три составные части:

Азотистое основание. Может быть пиримидиновое и пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов.

Остаток фосфорной кислоты.

Моносахарид – рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

Нуклеотид по своей сути – это фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

http :// sbio . info / page . php ? id =11

Азо́тистые основа́ния гетероциклические органические соединения, производные пиримидина и пурина , входящие в состав нуклеиновых кислот . Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК.



В продолжение темы:
Инсулин

Все Знаки Зодиака отличаются друг от друга. В этом нет никаких сомнений. Астрологи решили составить рейтинг самых-самых Знаков Зодиака и посмотреть, кто же из них в чем...

Новые статьи
/
Популярные