Хромосома функции. Строение хромосом. Структурная организация хроматина

Важнейшие из органелл клетки представляют собой микроскопические структуры , находящиеся в ядре. Они были открыты одновременно несколькими учёными, в том числе российским биологом Иваном Чистяковым.

Название нового клеточного компонента было придумано не сразу. Его дал немецкий учёный В. Вальдейер, который,окрашивая гистологические препараты, обнаружил некие тельца, хорошо окрашивающиеся фуксином. Тогда ещё не было точно известно какую роль в выполняют хромосомы.

Вконтакте

Значение

Структура

Рассмотрим, какое строение и функции имеют эти уникальные клеточные образования. В состоянии интерфазы их практически не видно. На этой стадии удваивается молекула и образуется две сестринские хроматиды .

Строение хромосомы можно рассмотреть в момент ее подготовки к митозу или мейозу (делению). Подобные хромосомы называются метафазными , потому что образуются на стадии метафазы, подготовки к делению. До этого момента тельца представляют собой невзрачные тонкие нити темного оттенка , которые называют хроматином .

При переходе в метафазную стадию строение хромосомы меняется: ее образуют две хроматиды, соединенные центромерой — так именуется первичная перетяжка . При делении клетки удваивается также количество ДНК . Схематический рисунок напоминает букву Х. Они содержат в составе, кроме ДНК, белки (гистоновые, негистоновые) и рибонуклеиновую кислоту — РНК.

Первичная перетяжка разделяет тело клетки (нуклеопротеидной структуры) на два плеча, немного сгибая их. На основе места расположения перетяжки и длины плеч была разработана следующая классификация типов:

  • метацентрические, они же равноплечие, центромера делит клетку ровно пополам;
  • субметацентрические. Плечи не одинаковы , центромера смещена ближе к одному концу;
  • акроцентрические. Центромера сильно смещена и находится почти скраю;
  • телоцентрическая. Одно плечо полностью отсутствует, у людей не встречается .

У некоторых видов имеется вторичная перетяжка , которая может располагаться в разных точках. Она отделяет часть, которая именуется спутником. От первичной отличается тем, что не имеет видимого угла между сегментами . Ее функция заключается в синтезировании РНК на матрице ДНК. У людей встречается в 13, 14, 21 и 15, 21 и 22 парах хромосом . Появление в другой паре несет угрозу тяжёлого заболевания.

Теперь остановимся на том, какую хромосомы выполняют функцию. Благодаря воспроизводству разных типов и-РНК и белков они осуществляют четкий контроль за всеми процессами жизни клетки и организма в целом. Хромосомы в ядре эукариот выполняют функции синтезирования белков из аминокислот, углеводов из неорганических соединений, расщепляют органические вещества до неорганических, хранят и передают наследственную информацию .

Диплоидный и гаплоидный наборы

Специфика строения хромосом может отличаться, смотря где они образуются. Как называется набор хромосом в соматических клеточных структурах? Он получил наименование диплоидного или двойного.Соматические клетки размножаются простым делением на две дочерние . В обычных клеточных образованиях каждая клеточка имеет свою гомологичную пару. Происходит это потому, что каждая из дочерних клеток должна иметь тот же объем наследственной информации , что и материнская.

Как соотносится число хромосом в соматических и половых клетках. Здесь числовое соотношение составляет два к одному. В процессе образования половых клеток происходит особый тип деле­ния , в итоге набор в зрелых яйцеклетках и сперматозо­идах становится одинарным. Какую функцию выполняют хромосомы можно объяснить, изучая особенности их устройства.

Мужские и женские половые клетки имеют половинчатый набор, называемый гаплоидным , то есть всего их насчитывается 23. Сперматозоид сливается с яйцеклеткой, получается новый организм с полным набором. Генетическая информация мужчины и женщины таким образом объединяется. Если бы половые клетки несли диплоидный набор (46), то при соединении получился бы нежизнеспособный организм .

Разнообразие генома

Число носителей генетической информации у разных классов и видов живых существ отличается.

Они обладают способностью окрашиваться специально подобранными красителями, в их структуре чередуются светлые и тёмные поперечные участки — нуклеотиды . Их последовательность и расположение носят специфический характер. Благодаря этому учёные научились различать клетки и, в случае необходимости, чётко указывать «поломанную».

В настоящее время генетики расшифровали человека и составили генетические карты, что позволяет методом анализа предположить некоторые серьёзные наследственные заболевания ещё до того, как они проявятся.

Появилась возможность подтверждать отцовство, определять этническую принадлежность , выявлять, не является ли человек носителем какой-либо патологии, до времени не проявляющейся либо дремлющей внутри организма, определять особенности негативной реакции на лекарства и многое другое.

Немного о патологии

В процессе передачи генного набора могут происходить сбои и мутации , приводящие к серьёзным последствиям, среди них встречаются

  • делеции — потеря одного участка плеча, вызывающая недоразвитие органов и клеток головного мозга;
  • инверсии – процессы, при которых фрагмент переворачивается на 180 градусов, результатом становится неправильная последовательность расположения генов ;
  • дупликации – раздвоение участка плеча.

Мутации могут возникать и между рядом находящимися тельцами — этот феномен был назван транслокацией. Известные синдромы Дауна, Патау, Эдвардса также являются следствием нарушения работы генного аппарата .

Хромосомные болезни. Примеры и причины

Классификация клеток и хромосом

Заключение

Значение хромосом велико. Без этих мельчайших ультраструктур невозможна передача генной информации , следовательно, организмы не смогут размножаться. Современные технологии могут читать, заложенный в них код и успешно предотвращать возможные болезни , которые раннее считались неизлечимыми.

Хромосомы - структуры клетки, хранящие и передающие наследственную информацию. Хромосома состоит из ДНК и белка. Комплекс белков, связанных с ДНК, образует хроматин. Белки играют важную роль в упаковке молекул ДНК в ядре.

ДНК в хромосомах упакована таким образом, что умещается в ядре, диаметр которого обычно не превышает 5 мкм (5-10 -4 см). Упаковка ДНК приобретает вид петельной структуры, похожей на хромосомы типаламповых щеток амфибий или политенных хромосом насекомых. Петли поддерживаются с помощью белков, которые узнают определенные последовательности нуклеотидов и сближают их. Строение хромосомы лучше всего видно в метафазе митоза.

Хромосома представляет собой палочковидную структуру и состоит из двух сестринских хроматид, которые удерживаются центромерой в области первичной перетяжки. Каждая хроматида построена из хроматиновых петель. Хроматин не реплицируется. Реплицируется только ДНК.

Рис. 14. Строение и репликация хромосомы

С началом репликации ДНК синтез РНК прекращается. Хромосомы могут находиться в двух состояниях: конденсированном (неактивном) и деконденсированном (активном).

Диплоидный набор хромосом организма называют кариотипом. Современные методы исследования позволяют определить каждую хромосому в кариотипе. Для этого учитывают распределение видимых под микроскопом светлых и темных полос (чередование AT и ГЦ-пар) в хромосомах, обработанных специальными красителями. Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, очень сходный характер чередования полос в хромосомах.

Каждый вид организмов обладает постоянным числом, формой и составом хромосом. В кариотипе человека 46 хромосом - 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (ХУ), а женщины гомогаметны (XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей (например, аллеля свертываемости крови). Хромосомы одной пары называют гомологичными. Гомологичные хромосомы в одинаковых локусах несут аллельные гены.

1.14. Размножение в органическом мире

Размножение - это воспроизведение генетически сходных особей данного вида, обеспечивающее непрерывность и преемственность жизни.

Бесполое размножение осуществляется следующими путями:

  • простым делением на две или сразу на много клеток (бактерии, простейшие);
  • вегетативно (растения, кишечнополостные);
  • делением многоклеточного тела пополам с последующей регенерацией (морские звезды, гидры);
  • почкованием (бактерии, кишечнополостные);
  • образованием спор.

Бесполое размножение обычно обеспечивает увеличение численности генетически однородного потомства. Но когда ядра спор образуются в результате мейоза, потомство от бесполого размножения будет генетически разным.

Половое размножение - процесс, в котором объединяется генетическая информация от двух особей.

Особи разного пола образуют гаметы. Женские особи производят яйцеклетки, мужские - сперматозоиды, обоеполые особи (гермафродиты) производят и яйцеклетки, и сперматозоиды. А у некоторых водорослей сливаются две одинаковых половых клетки.

При слиянии гаплоидных гамет происходит оплодотворение и образование диплоидной зиготы.

Зигота развивается в новую особь.

Все вышеперечисленное справедливо только для эукариот. У прокариот тоже есть половой процесс, но происходит он по-другому.

Таким образом, при половом размножении происходит смешивание геномов двух разных особей одного вида. Потомство несет новые генетические комбинации, что отличает их от родителей и друг от друга.

Один из видов полового размножения - партеногенез, или развитие особей из неоплодотворенной яйцеклетки (тли, трутни пчел и др.).

Строение половых клеток

Яйцеклетки - круглые, сравнительно крупные, неподвижные клетки. Размеры - от 100 мкм до нескольких сантиметров в диаметре. Содержат все органоиды, характерные для эукариотической клетки, а также включения запасных питательных веществ в виде желтка. Яйцеклетка покрыта яйцевой оболочкой, состоящей в основном из гликопротеидов.

Рис. 15. Строение яйцеклетки птицы : 1 - халаза; 2 - скорлупа; 3 - воздушная камера; 4 - наружная подскорлуновая оболочка; 5 - жидкий белок; 6 - плотный белок; 7 - зародышевый диск; 8 - светлый желток; 9 - темный желток.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений - в семяпочках, локализованных в завязи цветка.

Яйцеклетки подразделяют следующим образом:

  • изолецитальные - желток распределен равномерно и его немного (у червей, моллюсков);
  • алецитальные - почти лишены желтка (млекопитающие);
  • телолецитальные - содержат много желтка (рыбы, птицы);
  • полилецитальные - содержат значительное количество желтка.

Овогенез - образование яйцеклеток у самок.

В зоне размножения находятся овогонии - первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут.

Сперматозоиды - мелкие, подвижные клетки. В них выделяют головку, шейку и хвост.

В передней части головки находится акросомальный аппарат - аналог аппарата Гольджи. В нем содержится фермент (гиалуронидаза), растворяющий оболочку яйцеклетки при оплодотворении. В шейке расположены центриоли и митохондрии. Жгутики сформированы из микротрубочек. При оплодотворении в яйцеклетку попадают только ядро и центриоли сперматозоида. Митохондрии и другие органоиды остаются снаружи. Поэтому цитоплазматическая наследственность у людей передается только по женской линии.

Половые клетки животных и растений, размножающихся половым путем, образуются в результате процесса, называемого гаметогенезом.

Хромосомы представляют собой нуклеопротеидные структуры эукариотической клетки, в которых хранится большая часть наследственной информации. Благодаря своей способности к самовоспроизведению, именно хромосомы обеспечивают генетическую связь поколений. Хромосомы образуются из длинной молекулы ДНК, в которой содержится линейная группа множества генов, и вся генетическая информация будь-то о человеке, животном, растении или любом другом живом существе.

Морфология хромосом связана с уровнем их спирализации. Так, если во время стадии интерфазы хромосомы максимально развернуты, то с началом деления хромосомы активно спирализуются и укорачиваются. Своего максимального укорочения и спирализации они достигают во время стадии метафазы, когда происходит формирование новых структур. Эта фаза наиболее удобна для изучения свойств хромосом, их морфологических характеристик.

История открытия хромосом

Еще в середине позапрошлого XIX века многие биологи изучая в строение клеток растений и животных, обратили внимание на тонкие нити и мельчайшие кольцевидные структуры в ядре некоторых клеток. И вот немецкий ученый Вальтер Флеминг применив анилиновые красители для обработки ядерных структур клетки, что называется «официально» открывает хромосомы. Точнее обнаруженное вещество было им названо «хроматид» за его способность к окрашиванию, а термин «хромосомы» в обиход чуть позже (в 1888 году) ввел еще один немецкий ученый – Генрих Вайлдер. Слово «хромосома» происходит от греческих слов «chroma» — окраска и «somo» — тело.

Хромосомная теория наследственности

Разумеется, история изучения хромосом не закончилась на их открытии, так в 1901-1902 годах американские ученые Уилсон и Сатон, причем независимо друг от друга, обратили внимание на сходство в поведении хромосом и менделеевских факторов наследственности — генов. В результате ученые пришли к заключению, что гены находятся в хромосомах и именно посредством их из поколения в поколения, от родителей к детям передается генетическая информация.

В 1915-1920 годам участие хромосом в передаче генов было доказано на практике в целой серии опытов, сделанных американским ученым Морганом и сотрудниками его лаборатории. Им удалось локализировать в хромосомах мухи-дрозофилы несколько сот наследственных генов и создать генетические карты хромосом. На основе этих данных была создана хромосомная теория наследственности.

Строение хромосом

Строение хромосом разнится в зависимости от вида, так метафазная хромосома (образующаяся в стадии метафазе при делении клетки) состоит из двух продольных нитей – хроматид, которые соединяются в точке, именуемой центромерой. Центромера – это участок хромосомы, который отвечает за расхождение сестринских хроматид в дочерние клетки. Она же делит хромосому на две части, названные коротким и долгим плечом, она же отвечает за деление хромосомы, так как именно в ней содержится специальное вещество – кинетохор, к которому крепятся структуры веретена деления.

Тут на картинке показано наглядное строение хромосомы: 1. хроматиды, 2. центромера, 3. короткое плечо хроматид, 4. длинное плечо хроматид. На концах хроматид располагаются теломеры, специальные элементы, которые защищают хромосому от повреждений и препятствуют слипанию фрагментов.

Формы и виды хромосом

Размеры хромосом растений и животных значительно различаются: от долей микрона до десятков микрон. Средние длины метафазных хромосом человека лежат в диапазоне от 1,5 до 10 микрон. В зависимости от вида хромосомы отличаются и ее способности к окрашиванию. В зависимости от расположения центромеры различают такие формы хромосом:

  • Метацентрические хромосомы, для которых характерно срединное расположение центромеры.
  • Субметацентрические, для них характерно неравномерное расположение хроматид, когда одно плечо более длинное, а второе более короткое.
  • Акроцентрические или палочковидные. У них центромера расположена практически в самом конце хромосомы.

Функции хромосом

Основные функции хромосом, как для животных, так и для растений и вообще всех живых существ – передача наследственной, генетической информации от родителей к детям.

Набор хромосом

Значение хромосом столь велико, что их количество в клетках, а также особенности каждой хромосомы определяют характерный признак того или иного биологического вида. Так, например, у мухи-дрозофилы в наличии 8 хромосом, у – 48, а хромосомный набор человека составляет 46 хромосом.

В природе существует два основных типа набора хромосом: одиночный или гаплоидный (содержится в половых клетках) и двойной или диплоидный. Диплоидный набор хромосом имеет парную структуру, то есть вся совокупность хромосом состоит из хромосомных пар.

Хромосомный набор человека

Как мы уже написали выше, клетки человеческого организма содержат 46 хромосом, которые объединены в 23 пары. Все вместе они и составляют хромосомный набор человека. Первые 22 пары человеческих хромосом (их называют аутосомами) являются общими как для мужчин, так и для женщин, и лишь 23 пара — половых хромосом — разнится у разных полов, она же определяет половую принадлежность человека. Совокупность всех пар хромосом также называется кариотипом.

Такой вид имеет хромосомный набор человека, 22 пары двойных диплоидных хромосом содержат всю нашу наследственную информацию, и последняя пара различается, у мужчин она состоит из пары условных X и Y половых хромосом, в то время как у женщин в наличии две хромосомы Х.

Аналогичную структуру хромосомного набора имеют и все животные, только количество неполовых хромосом у каждого из них свое.

Генетические болезни, связанные с хромосомами

Нарушение в работе хромосом, или даже само их неправильно количество является причиной многих генетических заболеваний. Например, синдрома Дауна появляется из-за наличия лишней хромосомы в хромосомном наборе человека. А такие генетические болезни как дальтонизм, гемофилия вызваны сбоями в работе имеющихся хромосом.

Хромосомы, видео

И в завершение интересно образовательное видео про хромосомы.


Эта статья доступна на английском языке — .

Хромосомы - это интенсивно окрашенное тельце, состоящее из молекулы ДНК, связанной с белками-гистонами. Хромосомы формируются из хроматина в начале деления клеток (в профазе митоза), но лучше их изучать в метафазе митоза. Когда хромосомы располагаются в плоскости экватора и хорошо видны в световой микроскоп, ДНК в них достигают максимальной спирализации.

Хромосомы состоят из 2 сестринских хроматид (удвоенных молекул ДНК), соединенных друг с другом в области первичной перетяжки - центромеры. Центромера делит хромосому на 2 плеча. В зависимости от расположения центромеры хромосомы подразделяются на:

    метацентрические центромера расположена в середине хромосомы и плечи ее равны;

    субметацентрические центромера смещена от середины хромосом и одно плече короче другого;

    акроцентрические - центромера расположена близко к концу хромосомы и одно плечо значительно короче другого.

В некоторых хромосомах есть вторичные перетяжки, отделяющие от плеча хромосомы участок, называемый спутником, из которого в интерфазном ядре образуется ядрышко.

Правила хромосом

1. Постоянство числа. Соматические клетки организма каждого вида имеют строго определенное число хромосом (у человека -46, у кошки- 38, у мушки-дрозофилы - 8, у собаки -78. у курицы -78).

2. Парность. Каждая хромосома в соматических клетках с диплоидным набором имеет такую же гомологичную (одинаковую) хромосому, идентичную по размерам, форме, но неодинаковую по происхождению: одну - от отца, другую - от матери.

3. Индивидуальность. Каждая пара хромосом отличается от другой пары размерами, формой, чередованием светлых и темных полос.

4. Непрерывность. Перед делением клетки ДНК удваивается и в результате получается 2 сестринские хроматиды. После деления в дочерние клетки попадает по одной хроматиде и, таким о6разом, хромосомы непрерывны - от хромосомы образуется хромосома.

Все хромосомы подразделяются на аутосомы и половые хромосомы. Аутосомы - все хромосомы в клетках, за исключением половых хромосом, их 22 пары. Половые - это 23-я пара хромосом, определяющая формирование мужского и женского организма.

В соматических клетках имеется двойной (диплоидный) набор хромосом, в половых - гаплоидный (одинарный).

Определенный набор хромосом клетки, характеризующийся постоянством их числа, размером и формой, называется кариотипом.

Для того чтобы разобраться в сложном наборе хромосом, их располагают попарно по мере убывания их величины, с учетом положения центромеры и наличия вторичных перетяжек. Такой систематизированный кариотип называется идиограммой.

Впервые такая систематизация хромосом была предложена на конгрессе генетиков в Денвере (США, 1960 г.)

В 1971 г. в Париже классифицировали хромосомы по окраске и чередованию темных и светлых полос гетеро-и эухроматина.

Для изучения кариотипа генетики используют метод цитогенетического анализа, при котором можно диагностировать ряд наследственных заболеваний, связанных с нарушением числа и формы хромосом.

1.2. Жизненный цикл клетки.

Жизнь клетки от момента возникновения в результате деления до ее собственного деления или смерти называется жизненным циклом клетки. В течение всей жизни клетки растут, дифференцируются и выполняют специфические функции.

Жизнь клетки между делениями называется интерфазой. Интерфаза состоит из 3-х периодов: пресинтетического, синтетического и постсинтетического.

Пресuнтетический период следует сразу за делением. В это время клетка интенсивно растет, увеличивая количество митохондрий и рибосом.

В синтетический период происходит репликация (удвоение) количества ДНК, а также синтез РНК и белков.

В постсинmетический период клетка запасается энергией, синтезируются белки ахроматинов ого веретена, идет подготовка к митозу.

Существуют различные типы деления клеток: амитоз, митоз, мейоз.

Амитоз - прямое деление прокариотических клеток и некоторых клеток у человека.

Митоз - непрямое деление клеток, во время которого из хроматина образуются хромосомы. Путем митоза делятся соматические клетки эукариотических организмов, в результате чего дочерние клетки получают точно такой же набор хромосом, какой имела дочерняя клетка.

Митоз

Митоз состоит из 4-х фаз:

    Профаза - начальная фаза митоза. В это время начинается спирализация ДНК и укорочение хромосом, которые из тонких невидимых нитей хроматина становятся короткими толстыми, видимыми в световой микроскоп, и располагаются в виде клубка. Ядрышко и ядерная оболочка исчезает, и ядро распадается, центриоли клеточного центра расходятся по полюсам клетки, между ними растягиваются нити веретена деления.

    Метафаза - хромосомы движутся к центру, к ним прикрепляются нити веретена. Хромосомы располагаются в плоскости экватора. Они хорошо видны в микроскоп и каждая хромосома состоит из 2-х хроматид. В этой фазе можно сосчитать число хромосом в клетке.

    Анафаза - сестринские хроматиды (появившиеся в синтетическом периоде при удвоении ДНК) расходятся к полюсам.

    Телофаза (telos греч. - конец) противоположна профазе: хромосомы из коротких толстых видимых становятся тонкими длинными невидимыми в световой микроскоп, формируются ядерная оболочка и ядрышко. Заканчивается телофаза разделением цитоплазмы с образованием двух дочерних клеток.

Биологическое значение митоза заключается в следующем:

    дочерние клетки получают точно такой же набор хромосом, который был у материнской клетки, поэтому во всех клетках тела (соматических) поддерживается постоянное число хромосом.

    делятся все клетки, кроме половых:

    происходит рост организма в эмбриональном и постэмбриональном периодах;

    все функционально устаревшие клетки организма (эпителиальные клетки кожи, клетки крови, клетки слизистых оболочек и др.) заменяются новыми;

    происходят процессы регенерации (восстановления) утраченных тканей.

Схема митоза

При воздействии неблагоприятных условий на делящуюся клетку веретено деления может неравномерно растянуть хромосомы к полюсам, и тогда образуются новые клетки с разным набором хромосом, возникает патология соматических клеток (гетероплоидия аутосом), что приводит к болезни тканей, органов, организма.

Наследственность и изменчивость в живой природе существуют благодаря хромосомам, генам, (ДНК). Хранится и передается в виде цепочки нуклеотидов в составе ДНК. Какая роль в этом явлении принадлежит генам? Что такое хромосома с точки зрения передачи наследственных признаков? Ответы на подобные вопросы позволяют разобраться в принципах кодирования и генетическом разнообразии на нашей планете. Во многом оно зависит от того, сколько хромосом входит в набор, от рекомбинации этих структур.

Из истории открытия «частиц наследственности»

Изучая под микроскопом клетки растений и животных, многие ботаники и зоологи еще в середине XIX века обратили внимание на тончайшие нити и мельчайшие кольцевидные структуры в ядре. Чаще других первооткрывателем хромосом называют немецкого анатома Вальтера Флемминга. Именно он применил анилиновые красители для обработки ядерных структур. Обнаруженное вещество Флемминг назвал "хроматином" за его способность к окрашиванию. Термин «хромосомы» в 1888 году ввел в научный оборот Генрих Вальдейер.

Одновременно с Флеммингом искал ответ на вопрос о том, что такое хромосома, бельгиец Эдуард ван Бенеден. Чуть раньше немецкие биологи Теодор Бовери и Эдуард Страсбургер провели серию экспериментов, доказывающих индивидуальность хромосом, постоянство их числа у разных видов живых организмов.

Предпосылки хромосомной теории наследственности

Американский исследователь Уолтер Саттон выяснил, сколько хромосом содержится в клеточном ядре. Ученый считал эти структуры носителями единиц наследственности, признаков организма. Саттон обнаружил, что хромосомы состоят из генов, с помощью которых потомкам от родителей передаются свойства и функции. Генетик в своих публикациях дал описания хромосомных пар, их движения в процессе деления клеточного ядра.

Независимо от американского коллеги, работы в том же направлении вел Теодор Бовери. Оба исследователя в своих трудах изучали вопросы передачи наследственных признаков, сформулировали основные положения о роли хромосом (1902-1903). Дальнейшая разработка теории Бовери-Саттона происходила в лаборатории нобелевского лауреата Томаса Моргана. Выдающийся американский биолог и его помощники установили ряд закономерностей размещения генов в хромосоме, разработали цитологическую базу, объясняющую механизм законов Грегора Менделя — отца-основателя генетики.

Хромосомы в клетке

Исследование строения хромосом началось после их открытия и описания в XIX веке. Эти тельца и нити содержатся в прокариотических организмах (безъядерных) и эукариотических клетках (в ядрах). Изучение под микроскопом позволило установить, что такое хромосома с морфологической точки зрения. Это подвижное нитевидное тельце, которое различимо в определенные фазы клеточного цикла. В интерфазе весь объем ядра занимает хроматин. В другие периоды различимы хромосомы в виде одной или двух хроматид.

Лучше видны эти образования во время клеточных делений — митоза или мейоза. В чаще можно наблюдать крупные хромосомы линейного строения. У прокариотов они меньше, хотя есть исключения. Клетки зачастую включают более одного типа хромосом, например свои собственные небольшие «частицы наследственности» есть в митохондриях и хлоропластах.

Формы хромосом

Каждая хромосома обладает индивидуальным строением, отличается от других особенностями окрашивания. При изучении морфологии важно определить положение центромеры, длину и размещение плеч относительно перетяжки. В набор хромосом обычно входят следующие формы:

  • метацентрические, или равноплечие, для которых характерно срединное расположение центромеры;
  • субметацентрические, или неравноплечие (перетяжка смещена в сторону одного из теломеров);
  • акроцентрические, или палочковидные, в них центромера находится практически на конце хромосомы;
  • точковые с трудно поддающейся определению формой.

Функции хромосом

Хромосомы состоят из генов — функциональных единиц наследственности. Теломеры — концы плеч хромосомы. Эти специализированные элементы служат для защиты от повреждения, препятствуют слипанию фрагментов. Центромера выполняет свои задачи при удвоении хромосом. На ней есть кинетохор, именно к нему крепятся структуры веретена деления. Каждая пара хромосом индивидуальна по месту расположения центромеры. Нити веретена деления работают таким образом, что в дочерние клетки отходит по одной хромосоме, а не обе. Равномерное удвоение в процессе деления обеспечивают точки начала репликации. Дупликация каждой хромосомы начинается одновременно в нескольких таких точках, что заметно ускоряет весь процесс деления.

Роль ДНК и РНК

Выяснить, что такое хромосома, какую функцию выполняет эта ядерная структура, удалось после изучения ее биохимического состава и свойств. В эукариотических клетках ядерные хромосомы образованы конденсированным веществом — хроматином. По данным анализа, в его состав входят высокомолекулярные органические вещества:

Нуклеиновые кислоты принимают самое непосредственное участие в биосинтезе аминокислот и белков, обеспечивают передачу наследственных признаков из поколения в поколение. ДНК содержится в ядре эукариотической клетки, РНК сосредоточена в цитоплазме.

Гены

Рентгеноструктурный анализ показал, что ДНК образует двойную спираль, цепи которой состоят из нуклеотидов. Они представляют собой углевод дезоксирибозу, фосфатную группу и одно из четырех азотистых оснований:


Участки спиралевидных дезоксирибонуклеопротеидных нитей — это гены, несущие закодированную информацию о последовательности аминокислот в белках или РНК. При размножении наследственные признаки от родителей потомству передаются в виде аллелей генов. Они определяют функционирование, рост и развитие конкретного организма. По мнению ряда исследователей, те участки ДНК, что не кодируют полипептиды, выполняют регулирующие функции. Геном человека может насчитывать до 30 тыс. генов.

Набор хромосом

Общее число хромосом, их особенности — характерный признак вида. У мухи-дрозофилы их количество — 8, у приматов — 48, у человека — 46. Это число является постоянным для клеток организмов, которые относятся к одному виду. Для всех эукариотов существует понятие «диплоидные хромосомы». Это полный набор, или 2n, в отличие от гаплоидного — половинного количества (n).

Хромосомы в составе одной пары гомологичны, одинаковы по форме, строению, местоположению центромер и других элементов. Гомологи имеют свои характерные особенности, которые их отличают от других хромосом в наборе. Окрашивание основными красителями позволяет рассмотреть, изучить отличительные черты каждой пары. присутствует в соматических же — в половых (так называемых гаметах). У млекопитающих и других живых организмов с гетерогаметным мужским полом формируются два вида половых хромосом: Х-хромосома и Y. Самцы обладают набором XY, самки — XX.

Хромосомный набор человека

Клетки организма человека содержат 46 хромосом. Все они объединяются в 23 пары, составляющие набор. Есть два типа хромосом: аутосомы и половые. Первые образуют 22 пары — общие для женщин и мужчин. От них отличается 23-я пара — половые хромосомы, которые в клетках мужского организма являются негомологичными.

Генетические черты связаны с половой принадлежностью. Для их передачи служат Y и Х-хромосома у мужчин, две X у женщин. Аутосомы содержат оставшуюся часть информации о наследственных признаках. Существуют методики, позволяющие индивидуализировать все 23 пары. Они хорошо различимы на рисунках, когда окрашены в определенный цвет. Заметно, что 22-я хромосома в геноме человека - самая маленькая. Ее ДНК в растянутом состоянии имеет длину 1,5 см и насчитывает 48 млн пар азотистых оснований. Специальные белки гистоны из состава хроматина выполняют сжатие, после чего нить занимает в тысячи раз меньше места в ядре клетки. Под электронным микроскопом гистоны в интерфазном ядре напоминают бусы, нанизанные на нить ДНК.

Генетические заболевания

Существует более 3 тыс. наследственных болезней разного типа, обусловленных повреждениями и нарушениями в хромосомах. К их числу относится синдром Дауна. Для ребенка с таким генетическим заболеванием характерно отставание в умственном и физическом развитии. При муковисцидозе происходит сбой в функциях желез внешней секреции. Нарушение ведет к проблемам с потоотделением, выделению и накоплению слизи в организме. Она затрудняет работу легких, может привести к удушью и летальному исходу.

Нарушение цветового зрения — дальтонизм — невосприимчивость к некоторым частям цветового спектра. Гемофилия приводит к ослаблению свертываемости крови. Непереносимость лактозы не позволяет организму человека усваивать молочный сахар. В кабинетах планирования семьи можно узнать о предрасположенности к тому или иному генетическому заболеванию. В крупных медицинских центрах есть возможность пройти соответствующее обследование и лечение.

Генотерапия — направление современной медицины, выяснение генетической причины наследственных заболеваний и ее устранение. С помощью новейших методов в патологические клетки вместо нарушенных вводят нормальные гены. В таком случае врачи избавляют больного не от симптомов, а от причин, вызвавших заболевание. Проводится только коррекция соматических клеток, методы генной терапии пока не применяются массово по отношению к половым клеткам.



В продолжение темы:
Инсулин

Все Знаки Зодиака отличаются друг от друга. В этом нет никаких сомнений. Астрологи решили составить рейтинг самых-самых Знаков Зодиака и посмотреть, кто же из них в чем...

Новые статьи
/
Популярные